K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

Đặt A = 2003/1.2 + 2003/2.3 + 2003/3.4 + ... + 2003/2002.2003

A = 2003 . ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2002.2003 )

A = 2003 . ( 1 - 1/2003 )

A = 2003 . 2002/2003

A = 2002

23 tháng 4 2016

Đặt A = 2003/1.2 + 2003/2.3 + 2003/3.4 + ... + 2003/2002.2003

A = 2003 . ( 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2002.2003 )

A = 2003 . ( 1 - 1/2003 )

A = 2003 . 2002/2003

A = 2002

2002+2002.2+2002.3+2002.4+2003.5+2003.6

=2002.(1+2+3+4)+2003.(5+6)

=2002.10+2003.11

=2002.10+2003.10+2003

=10.(2002+2003)+2003

=10.4005+2003

=40050+2003

=42053

7 tháng 4 2020

giúp mình nhé

16 tháng 1 2019

a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)

  \(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)

  \(=0+0+...+0=0\)

b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)

   \(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)

   \(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

   \(=\left(-4\right)\cdot501=\left(-2004\right)\)

  

1 tháng 2 2018

thực sự bạn có thể bấm máy tính đó đồ ngốc, ahihi

3 tháng 2 2018

Do ngu người ta keu tinh nhanh ma

31 tháng 3 2017

Đáp án của tớ là:

\(\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}=\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)=\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)

Vậy:\(1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)

6 tháng 3 2015

xin chòa hôm nay mình sẽ giúp bạn lam bài toán này 

ta có

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1+1/2+1/3+....+1/1001)

1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1/2+1/4+1/6+....+1/2002)-(1/2+1/4+1/6+......+1/2002)

1/1002+1/1003+.....+1/2003=1+1/2+1/3+....+1/2003-1/2+1/4+1/6+....+1/2002-1/2-1/4-1/6-....-1/2002

Vậy1/1002+1/1002+.....+1/2003=1-1/2+1/3-1/4+....-2/2002-1/2003

2 tháng 3 2016

Có:

  1. 2003A=20032004+2003/20032004+1 = 20032004+1+2002/20032004+1= 1+ 2002/20032004+1
  • ​2003A= 20032003+2003/20032003+1 .........= 1 + 2002/20032003+1​
  • Vì 1+ 2002/20032004+1<1+ 20022003+1nên 2003A<2003B
  • Nên A<B 
  • !!!!!!!!!!!
2 tháng 1 2018

Bạn làm sai rồi