K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2023

Ta có ( x - 5 )( y + 3 ) = -9

Vì x; y ϵ Z nên x - 5; y + 3 ϵ Z

Vậy x - 5; y + 3 ϵ Ư( -9 ) = { -1; 1; -3; 3; -9; 9 }

Lập bảng giá trị

x - 5 1 -1 3 -3 9 -9
x 6 4 8 2 14 -4
y + 3 -9 9 -3 3 -1 1
y -12 6 -6 0 -4 -2

Vậy các cặp số nguyên ( x; y ) cần tìm là ( -9; -12 ) ; ( 9; 6 ) ; ( -3; -6 ) ; ( 3; 0 ) ; ( -1; -4 ) ; ( 1; -2 )

29 tháng 7 2023

(x-5)(y+3)=-1x9=-3x3=-9x1(x,y ϵ z)

=>

        x-5        -1          -3          -9
       y+3        9          3           1
        x        4          2           -4
       y        6          0          -2

Vậy (x,y)=(4,6)=(2,0)=(-4,-2)

5 tháng 10 2021

a) \(\dfrac{x}{y}=\dfrac{9}{7}\)\(\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\)\(\dfrac{y}{7}=\dfrac{z}{3}\)

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c: Ta có: 5x=8y=20z

nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)

Do đó: x=24; y=15; z=6

`@` `\text {Ans}`

`\downarrow`

Ta có:

`x/2 = y/3 = z/4`

`=>`\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x-3y+z}{4-9+4}=-\dfrac{3}{-1}=3\)

`=>`\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=3\)

`=>`\(x=2\cdot3=6,\) `y = 3*3 = 9, z = 4*3=12`

6 tháng 7 2023

mình cần gấp ạ :)))

 

13 tháng 3 2020

Ta có:

\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=k\left(1\right)\)

\(\frac{\left(x+y\right)+\left(5-z\right)+\left(y+z\right)+\left(9+y\right)}{3+1+2+5}=\frac{x+y-4}{1}\)

=> \(\hept{\begin{cases}x+y-4=k\\x+y=3k\end{cases}}\)=> \(k+4=x+y\)

=> \(4+k=3k\Rightarrow4=2k\Rightarrow k=2\)

=> \(5-z=k\Rightarrow z=5-k=5-2=3\)

\(9+y=5k\Rightarrow y=5k-9=10-9=1\)

\(x+y=3k\Rightarrow x=3k-y=6-1=5\)

Từ (1) => \(\hept{\begin{cases}x=5\\y=1\\z=3\end{cases}}\)

13 tháng 3 2020

\(\frac{x+y}{5-z}=\frac{3}{1}\Leftrightarrow x+y=15-3z\) (1)

\(\frac{5-z}{y+z}=\frac{1}{2}\Leftrightarrow10-2z=y+z\Leftrightarrow y=10-3z\) (2)

\(\frac{y+z}{y+9}=\frac{2}{5}\Leftrightarrow5y+5z=2y+18\Leftrightarrow3y=18-5z\) (3)

Tù (2) và (3), ta có HPT: \(\hept{\begin{cases}y=10-3z\\3y=18-5z\end{cases}}\)<=> \(\hept{\begin{cases}y+3z=10\\3y+5z=18\end{cases}}\)

Giải HPT đó, ta có: \(y=1\)\(z=3\)

Thay \(y=1\) và \(z=3\) vào PT(1), ta có: \(x=15-3\cdot3-1=15-9-1=5\)

Vậy \(x=5\)\(y=1\) và \(z=3\).

NV
9 tháng 1 2023

Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)

1 tháng 10 2019

1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

                  \(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)

=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)

Vậy ....

2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

           \(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)

vậy ...

1 tháng 10 2019

3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

       \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)

         \(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)

Vậy ...