Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
⇒\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c: Ta có: 5x=8y=20z
nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)
Do đó: x=24; y=15; z=6
`@` `\text {Ans}`
`\downarrow`
Ta có:
`x/2 = y/3 = z/4`
`=>`\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x-3y+z}{4-9+4}=-\dfrac{3}{-1}=3\)
`=>`\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=3\)
`=>`\(x=2\cdot3=6,\) `y = 3*3 = 9, z = 4*3=12`
Ta có:
\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=k\left(1\right)\)
\(\frac{\left(x+y\right)+\left(5-z\right)+\left(y+z\right)+\left(9+y\right)}{3+1+2+5}=\frac{x+y-4}{1}\)
=> \(\hept{\begin{cases}x+y-4=k\\x+y=3k\end{cases}}\)=> \(k+4=x+y\)
=> \(4+k=3k\Rightarrow4=2k\Rightarrow k=2\)
=> \(5-z=k\Rightarrow z=5-k=5-2=3\)
\(9+y=5k\Rightarrow y=5k-9=10-9=1\)
\(x+y=3k\Rightarrow x=3k-y=6-1=5\)
Từ (1) => \(\hept{\begin{cases}x=5\\y=1\\z=3\end{cases}}\)
\(\frac{x+y}{5-z}=\frac{3}{1}\Leftrightarrow x+y=15-3z\) (1)
\(\frac{5-z}{y+z}=\frac{1}{2}\Leftrightarrow10-2z=y+z\Leftrightarrow y=10-3z\) (2)
\(\frac{y+z}{y+9}=\frac{2}{5}\Leftrightarrow5y+5z=2y+18\Leftrightarrow3y=18-5z\) (3)
Tù (2) và (3), ta có HPT: \(\hept{\begin{cases}y=10-3z\\3y=18-5z\end{cases}}\)<=> \(\hept{\begin{cases}y+3z=10\\3y+5z=18\end{cases}}\)
Giải HPT đó, ta có: \(y=1\), \(z=3\)
Thay \(y=1\) và \(z=3\) vào PT(1), ta có: \(x=15-3\cdot3-1=15-9-1=5\)
Vậy \(x=5\), \(y=1\) và \(z=3\).
Đặt \(\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=-4k\\y=-7k\\z=3k\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{-4k-3.\left(-7k\right)-6.3k}=\dfrac{16k}{-1k}=-16\)
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
Ta có ( x - 5 )( y + 3 ) = -9
Vì x; y ϵ Z nên x - 5; y + 3 ϵ Z
Vậy x - 5; y + 3 ϵ Ư( -9 ) = { -1; 1; -3; 3; -9; 9 }
Lập bảng giá trị
Vậy các cặp số nguyên ( x; y ) cần tìm là ( -9; -12 ) ; ( 9; 6 ) ; ( -3; -6 ) ; ( 3; 0 ) ; ( -1; -4 ) ; ( 1; -2 )
(x-5)(y+3)=-1x9=-3x3=-9x1(x,y ϵ z)
=>
Vậy (x,y)=(4,6)=(2,0)=(-4,-2)