K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2023

Một giờ vòi thứ nhất chảy được 1/5 bể; vòi thứ hai chảy được 1/7 bể

Một giờ vòi thứ nhất chảy được nhiều hơn vòi thứ hai là: 1/5 - 1/7 = 2/35 bể

đổi 5 giờ 48 phút = 29/5 giờ

Nếu vòi thứ nhất chảy trong 5 giờ 48 phút thì được:

1/5 x 29/5 =29/25 bể

Số nước dư ra là:

29/25 - 1 = 4/25 bể

Thời gian vòi thứ hai chảy vào bể là:

4/25 : 2/35 = 14/5 giờ = 2 giờ 48 phút

Thời gian vòi thứ nhất chảy vào bể là:

5 giờ 48 phút - 2 giờ 48 phút = 3 giờ

26 tháng 12 2015

tick mk nha sáng giờ chẳng ai tick cả huhu

mk sẽ tick lại

26 tháng 12 2015

5 giờ 

tik nha huhu

4 tháng 3 2022

Một giờ vòi thứ nhất chảy được 1/5 bể; vòi thứ hai chảy được 1/7 bể

Một giờ vòi thứ nhất chảy được nhiều hơn vòi thứ hai là: 1/5 - 1/7 = 2/35 bể

đổi 5 giờ 48 phút = 29/5 giờ

Nếu vòi thứ nhất chảy trong 5 giờ 48 phút thì được:

1/5 x 29/5 =29/25 bể

Số nước dư ra là:

29/25 - 1 = 4/25 bể

Thời gian vòi thứ hai chảy vào bể là:

4/25 : 2/35 = 14/5 giờ = 2 giờ 48 phút

Thời gian vòi thứ nhất chảy vào bể là:

5 giờ 48 phút - 2 giờ 48 phút = 3 giờ

đáp số: vòi 1: 3 giờ; vòi 2: 2 giờ 48 phút

16 tháng 2 2020

17 GIỜ 30 PHÚT NHÉ 

LINK MÌNH VỚI

30 tháng 3 2017

Nếu cả hai vòi cùng chảy thì hết số thời gian là:

(5  +7) : (2 x 2) = 3 giờ

Vòi thứ nhất chảy trong:

5,8 - 3 = 2,8 giờ

Vòi thứ hai chảy trong:

5,8 - 2,8 = 3 giờ

Đs:

    tk nha!

10 tháng 7 2021

đổi 4 giờ 30 phút=9/2 giờ 6 giờ 45 phút=27/4 giờ 1 giờ vòi 1 chảy được là: 1:9/2=2/9(bể) 1 giờ vòi 2 chảy được là: 1:27/4=4/27(bể) 1 giờ 2 vòi chảy được là: 4/27+2/9=10/27(bể) thời gian để 2 vòi chảy đầy bể là: 1:10/27=27/10(giờ) lượng nước nếu vòi 1 chảy trong 27/10 giờ là: 27/10.2/9=3/5(bể) lượng nước cần chảy thêm là: 1-3/5=2/5(bể) sau khi mở vòi 2 thì đầy bể nước sau: 2/5:4/27=27/10(giờ)

2 tháng 5 2022

                                                                                                                      

21 tháng 3 2016

\(y=\frac{1}{x^2+\sqrt{x}}\sqrt{\frac{\int^{ }_{ }^2\vec{^2}}{ }}\)