Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số hs thi trg A là x (hs) (x,y thuộc N*)
số hs thi trg B là y(hs)
tổng số hs 2 trg A và B là:
\(x+y=840:84\%=1000\left(1\right)\)
tổng số hs đỗ vào trg công lập của trg A và B là:
\(80\%x+90\%y=840\\ \Leftrightarrow0,8x+0,9y=840\left(2\right)\)
từ (1) và (2) => hpt:
\(\left\{{}\begin{matrix}x+y=1000\\0,8x+0,9y=840\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=400\\x=600\end{matrix}\right.\)
vậy.... pt r tự giải chi tiết ra nhá ~~ a lười bấm máy tính cho nhanh
Tổng số h/s dự thi của cả 2 trường là 420:84%=500 (h/s)
Gọi số h/s dự thi của trường A và B lần lượt là a,b (h/s) (a,b nguyên dương và 0<a,b<500)
=> a+b=500
Tỉ lệ đỗ của trường A là 80% nên số h/s thi đỗ của trường A là 80%.a=8/10.a
Tương tự số h/s thi đỗ của trường B là 9/10.b
Mà 2 trường có 420 h/s đỗ => 8/10.a+9/10.b=420
Giải hệ \(\hept{\begin{cases}a+b=500\\\frac{8}{10}a+\frac{9}{10}b=420\end{cases}}\)được a=300,b=200
Cách 1
Gọi số học sinh trường A là x ; số học sinh trường B là y ( x, y ∈ N ; x,y < 420 )
Theo bài ra ta có hpt : \(\left\{{}\begin{matrix}x+y=420\\\dfrac{4}{5}x+\dfrac{9}{10}y=352,8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=252\\y=168\end{matrix}\right.\)(tm)
Vậy ...
Cách 2
Gọi số học sinh trường A là x ( x ∈ N | 0 < x < 420 )
=> Số học sinh trường y là 420 - x
Theo bài ra ta có phương trình :
4/5x + 378 - 9/10x = 352,8
<=> x = 252 (tm)
Vậy ...
trường A có 125 HS dự thi
trường B có 125 HS dự thi...hên xui nhé
olm duyệt đi
Gọi x,y lần lượt số sinh lần lượt của trường THCS A và THCS B (x,y>0) (Học sinh)
Vì tổng số học sinh là 500: x+y=500 (1)
Mặt khác, với các thông tin về số học sinh đỗ, ta có hpt:
90% x + 80% y = 84%. 500
<=> 0,9x + 0,8y = 420 (2)
Từ (1), (2) ta có hpt:
\(\left\{{}\begin{matrix}x+y=500\\0,9x+0,8y=420\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=200\left(TM\right)\\y=300\left(TM\right)\end{matrix}\right.\)
Trường THCS A có số học sinh đỗ là: 200 x 90%= 180 (học sinh)
Số học sinh đỗ vào 10 của trường THCS B là: 300 x 80%= 240(học sinh)
Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\), \(0< x< 435\))
y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\), \(0< y< 435\))
Vì hai trường A và B có 435 học sinh dự thi nên ta có PT: \(x+y=435\) (1)
Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có tỉ lệ thi đỗ vào lớp 10 là 87% nên ta có PT: \(85\%x+90\%y=87\%\cdot435\) (2)
Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=435\\85\%x+90\%y=87\%\cdot435\end{cases}}\)
Giải HPT, ta có: \(\hept{\begin{cases}x=261\\y=174\end{cases}}\) (TMĐK)
Vậy trường A có 261 học sinh dự thi và trường B có 174 học sinh dự thi, vào lớp 10.
Gọi x là số học sinh dự thi vào lớp 10 của trường A (h/s, \(x\in N\),\(0< x< 500\))
y là số học sinh dự thi vào lớp 10 của trường B (h/s, \(y\in N\),\(0< y< 500\))
Vì cả hai trường có 435 thi đỗ vào lớp 10 đạt tỉ lệ là 87% nên ta có PT: \(x+y=\frac{435}{87\%}\) <=> \(x+y=500\) (1)
Vì trường A có tỉ lệ thi đỗ vào lớp 10 là 85%, trường B có tỉ lệ thi đỗ vào lớp 10 là 90%, và cả hai trường có 435 học sinh thi đỗ vào lớp 10 nên ta có PT: \(85\%x+90\%y=435\) (2)
Từ (1) và (2), ta có HPT: \(\hept{\begin{cases}x+y=500\\85\%x+90\%y=435\end{cases}}\)
Giải HPT, ta có: \(\hept{\begin{cases}x=300\\y=200\end{cases}}\) (TMĐK)
Vậy trường A có 300 học sinh dự thi và trường B có 200 học sinh dự thi, vào lớp 10.
gọi so hs trg A va B la x va y ta co hệ pt;
x+y = 420.100/84 = 500
0,8x + 0,9y = 420
giai hệ pt ta dc;
x = 300hs
y= 200hs
so hs do lop 10 trg A la; 300.80/100 = 240hs
so hs do lop 10 trg B la; 200.90/100 = 180hs
chắc ai cung hiểu