Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(\(\frac{1}{5}\))2 .n = (\(\frac{1}{125}\))3 - n
<=> \(\frac{1}{25}\)n +n = \(\frac{1}{5^9}\)
<=> \(\frac{26}{25}\)n = \(\frac{1}{5^9}\)
<=> n = \(\frac{1}{5^9}\): \(\frac{26}{25}\)= \(\frac{1}{2031250}\)
5 . y . \(\frac{1}{2}\). x3y(\(\frac{-1}{3}\).x2.y)3= \(\frac{5}{2}\)x3y2 \(\frac{-1}{27}\) x6y3= \(\frac{-5}{54}\)x9y5
Hệ số \(\frac{-5}{54}\)
Phần biến : x9y5
Bậc : 14
Chúc bạn học tốt !!!
\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)
\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)
\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)
\(A=1-\left(\frac{1}{2}\right)^{20}\)
1,
\(\frac{25}{12}+\left(\frac{-4}{12}\right)=\frac{7}{4}\)
\(\frac{-10}{8}+\frac{15}{4}=\frac{5}{2}\)
\(\frac{3}{8}+\frac{-14}{6}=\frac{-47}{24}\)
\(\frac{350}{150}+\left(\frac{-200}{360}\right)=\frac{16}{9}\)
\([\frac{5}{8}+\left(\frac{-3}{4}\right)]+\frac{15}{6}=\frac{-1}{8}+\frac{15}{6}=\frac{19}{8}\)
\(\frac{7}{3}+[\left(\frac{-5}{6}\right)+\left(\frac{-2}{3}\right)]=\frac{7}{3}+\left(\frac{-3}{2}\right)=\frac{5}{6}\)
\(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\)\(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\left(\dfrac{1}{3}\right)^5\)
⇒\(\left[{}\begin{matrix}\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\\\dfrac{2}{3}x-\dfrac{1}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}\dfrac{2}{3}x=\dfrac{2}{3}\\\dfrac{2}{3}x=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)