2 mũ 13 +2 mũ 5 trên 2mũ 10 +2 mũ 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

\(\dfrac{2^{13}+2^5}{2^{10}+2^5}\)

\(=\dfrac{2^5\cdot\left(2^8+1\right)}{2^5\cdot\left(2^5+1\right)}\)

\(=\dfrac{2^8+1}{2^5+1}\)

1 tháng 10 2023

Đúng không vậy bạn

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

13 tháng 7 2017

1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 ) 
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101 
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 
3. 
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101 
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100) 
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2 
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101 
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 ) 
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2 
c) xem lại đề ý c xem quy luật như thế nào nhé. 
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151 
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150) 
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

14 tháng 8 2017

a,   \(2^x-15=17\)

\(\Rightarrow2^x=17+15\)

\(\Rightarrow2^x=32\)

\(\Rightarrow2^x=2^5\)

\(\Rightarrow x=5\)

b,   \(\left(7x-11\right)^3=2^5.5^2+200\)

\(\Rightarrow\left(7x-11\right)^3=32.25+200\)

\(\Rightarrow\left(7x-11\right)^3=1000\)

\(\Rightarrow\left(7x-11\right)^3=10^3\)

\(\Rightarrow7x-11=10\)

\(\Rightarrow7x=10+11\)

\(\Rightarrow7x=21\)

\(\Rightarrow x=21:7\)

\(\Rightarrow x=3\)

c,   \(x^{10}=1^x\)

\(\Rightarrow x\in\left\{1;0\right\}\)

14 tháng 8 2017

\(2^x-15=17\)

\(\Rightarrow2^x=17+15\)

\(\Rightarrow2^x=32=2^4\)

\(\Rightarrow x=4\)

\(\left(7x-11\right)^3=2^5.5^2+200\)

Phần này mk ko bt làm đâu

\(x^{10}=1^x\)

\(\Rightarrow\)\(x^{10}=1\)

\(\Rightarrow x=1\)

3 tháng 10 2020

\(2^x+4.2^{11}=5.2^5\) đề đây ư?

3 tháng 10 2020

\(2^x+4.2^{11}=5.2^5\)

\(\Leftrightarrow2^x+4.2048=5.32\)

\(\Leftrightarrow2^x+8192=160\)

\(\Leftrightarrow2^x=-8032\)

Vậy phương trình vô nghiệm

2= 4: 25

2x = (22)3 : 25

2x = 26 : 25

2x = 2

=> x = 1

18 tháng 9 2016

viết kiểu gì ko hiểu

25 tháng 7 2015

Thế này à:

a, \(\frac{2^{13}+25}{2^{10}}\)

b, \(\frac{21^2.14.125}{35^5.6}\)

c,\(\frac{45^3.20^4.18^2}{180^5}\)

d, \(\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)

17 tháng 3 2016

2 mũ 13 ta chia cho 2 mũ 10 ta có là 2 mũ 3 chuyển thành 8 rồi cộng cho 25 ta có là 33

10 tháng 10 2021

(2^4 x 5^2 x 11^2 x 7) : (2^3 x 5^3 x 7^2 x 11)

= (2^3 x 2 x 5^2 x 11 x 77) : ( 2^3 x 5^2 x 5 x 7 x 77)          bỏ những số trùng nhau vì là phép nhân

= (2 x 11) : (5 x 7) 

= 22/35

6 tháng 3 2020

a)\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{9}\)

b)\(\frac{\left(-11\right)^5.13^7}{11^5.13^8}=-\frac{1}{13}\)

c)\(\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=2\)

d(\(\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(35+9\right)}=\frac{1}{6}\)

7 tháng 3 2020

giúp mk vs nha