Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (giờ) là thời gian DCSX 1 làm riêng để xong công việc
y (giờ) là thời gian DCSX 2 làm riêng để xong công việc
Điều kiện : x,y > 12
Trong một giờ, DCSX 1 làm được là : 1/x (công việc)
Trong một giờ, DCSX 2 làm được là : 1/y (công việc)
Vì cả 2 DCSX của nhà máy làm chung đã hoàn thành công việc sau 12h nên ta có phương trình :
1/x + 1/y = 1/12 (1)
Vì nếu làm riêng thì DCSX 1 làm chậm hơn DCSX 2 là 7h để xong công việc nên ta có phương trình :
y - x = 7 (2)
Từ (1) và (2) ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\y-x=7\end{cases}}\)\(\Leftrightarrow\) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{x+7}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x+7}{x\left(x+7\right)}+\frac{x}{x\left(x+7\right)}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\frac{2x+7}{x^2+7x}=\frac{1}{12}\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}12\left(2x+7\right)=x^2+7x\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}24x+84=x^2+7x\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2+7x-24x-84=0\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-17x-84=0\\y=x+7\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\orbr{\begin{cases}x_1=21\left(nh\text{ậ}n\right)\\x_2=-4\left(l\text{oại}\right)\end{cases}}\\y=21+7=28\end{cases}}\)\(\hept{\begin{cases}x=21\\y=28\end{cases}}\left(tm\right)\)
Vậy DCSX 1 làm riêng thì sau 21h sẽ xong công việc
DCSX 2 làm riêng thì sau 28h sẽ xong công việc
gọi thời gian cày riêng của máy 1 là a suy ra thời gian cày của máy 2 là (a+3). Ta có:
Trong 1 h máy 1 cày được 1/a thửa ruộng, máy 2 cày được 1/(a+3) thửa ruộng.
Ta lại có: 2/a + 2/(a+3)= 1
4a+6= a.(a+3)
a= 3.
Suy ra thời gian cày riêng của máy 2 là 6 giờ
đúng nhé
Bài 1:
Giả sử người thứ I làm riêng thì sau $a$ giờ thì xong. Khi đó người thứ II làm riêng sau $a+6$ giờ thì xong
Trong 1 giờ:
Người I làm $\frac{1}{a}$ công việc
Người II làm $\frac{1}{a+6}$ công việc
Trong 4 giờ, hai người làm:
$\frac{4}{a}+\frac{4}{a+6}=1$ (công việc)
Với $a>0$ ta dễ dàng tìm được $a=6$ (giờ)
Vậy người I làm riêng mất $6$ giờ, người II làm riêng mất $12$ giờ.
Bài 2:
Thể tích bồn nước là:
$V=S_{đáy}. h=0,42.1,65=0,693(m^3)$
Vậy bồn nước này đựng đầy $0,693$ mét khối nước.
Gọi thời gian máy cày thứ nhất một mình làm xong công việc là x ( > 0; giờ )
=> thời gian máy cày thứ hai một mình làm xong công việc là x + 10 ( giờ )
1 giờ máy thứ nhất làm được: \(\frac{1}{x}\) ( công việc )
1 giờ máy thứ 2 làm được : \(\frac{1}{x+10}\) ( công việc )
1 giờ cả hai máy làm được: \(\frac{1}{12}\) ( công việc )
=> \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\Leftrightarrow x+10+x=\frac{x^2+10x}{12}\)
<=> \(x^2-14x-120=0\Leftrightarrow\orbr{\begin{cases}x=-6\left(loai\right)\\x=20\left(tm\right)\end{cases}}\)
Vậy máy 1 làm riêng trong 20 giờ và máy thứ 2 làm riêng trong 30 giờ thì xong công việc.