Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
AB/AC=2/3
nên HB/HC=4/9
=>HB=4/9HC
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>4/9HC2=36
=>HC=9(cm)
=>HB=4(cm)
\(AB=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
Bài 1:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x-1=-2x+5\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=5\end{matrix}\right.\)
Bài 2:
a: \(x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
b: \(x^4-x^2-12=0\)
\(\Leftrightarrow x^4-4x^2+3x^2-12=0\)
\(\Leftrightarrow x^2-4=0\)
=>x=2 hoặc x=-2
Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:
\(-3=4a+b\)
Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:
\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)
Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)
b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:
\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)
Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé
Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R
\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)
Chọn các điểm:
x 1 3 -1 2 -2
y 4 0 0 3 -5
Lời giải:
Điều kiện \(ab+bc+ac=abc\) là không cần thiết và bạn cần sửa lại đề bài là: CMR \(\sqrt{\frac{b^2+2a^2}{ab}}+\sqrt{\frac{c^2+2b^2}{bc}}+\sqrt{\frac{a^2+2c^2}{ac}}\geq 3\sqrt{3}\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(b^2+2a^2=b^2+a^2+a^2\geq 3\sqrt[3]{b^2a^4}\)
\(\Rightarrow \frac{b^2+2a^2}{ab}\geq \frac{3\sqrt[3]{b^2a^4}}{ab}=3\sqrt[3]{\frac{a}{b}}\)
\(\Rightarrow \sqrt{\frac{b^2+2a^2}{ab}}\geq \sqrt{3}.\sqrt[6]{\frac{a}{b}}\)
Hoàn toàn TT: \(\sqrt{\frac{c^2+2b^2}{bc}}\geq \sqrt{3}.\sqrt[6]{\frac{b}{c}}; \sqrt{\frac{a^2+2c^2}{ac}}\geq \sqrt{3}.\sqrt[6]{\frac{c}{a}}\)
Cộng theo vế những BĐT vừa thu được:
\(\Rightarrow \text{VT}\geq \sqrt{3}\left(\sqrt[6]{\frac{a}{b}}+\sqrt[6]{\frac{b}{c}}+\sqrt[6]{\frac{c}{a}}\right)\)
\(\geq \sqrt{3}.3\sqrt[18]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\sqrt{3}\) (tiếp tục áp dụng BĐT AM-GM)
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b=c$
Bài 4:
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=HB\cdot HC\)