Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x, y (giờ) lần lượt là thời gian mà người thứ nhất và người thứ hai một mình xây xong bức tường.
Điều kiện:
Như vậy, trong 1 giờ người thứ nhất xây được 1/x (bức tường), người thứ hai xây được 1/y (bức tường).
Trong 1 giờ, cả hai người xây được 1: 36/5 = 5/36 (bức tường)
Ta có phương trình: 1/x + 1/y = 5/36
Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì cả hai xây được 3/4 bức tường, ta có phương trình: 5/x + 6/y = 3/4
Ta có hệ phương trình:
Đặt m = 1/x , n = 1/y , ta có:
Giá trị của x và y thỏa điều kiện bài toán.
Vậy người thứ nhất làm một mình xong bức tường trong 12 giờ, người thứ hai làm một mình xong bức tường trong 18 giờ.
Gọi thời gian người thứ nhất xây một mình xong bức tường là \(x\) (giờ), thời gian người thứ hai xây một mình xong bức tường là \(y\) (giờ); \(x>0;y>0\). Coi toàn bộ công việc như một đơn vị công việc.
Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )
Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)
Gọi tg người thứ nhất làm riêng và hoàn thành cv là x
tg người thứ 2 làn riêng hoàn thành cv là y (x,y>0)
vi 2 người cùng làm chung trong 8h thì xong cv nên \(\dfrac{8}{x}+\dfrac{8}{y}=1\) (1)
vì nếu người thứ nhất làm trong 1h30p=3/2h và ng thứ 2 lm tiếp 3h thì đc 25% cv nên \(\dfrac{3}{2x}+\dfrac{3}{y}=\dfrac{1}{4}\) (2)
từ 1 và 2 ta có hpt \(\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=1\\\dfrac{3}{2x}+\dfrac{3}{y}=\dfrac{1}{4}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=12\left(tm\right)\\y=24\left(tm\right)\end{matrix}\right.\)( tự giải hệ và kết luận)
Người 1 : 3 giờ 30 phút
Người 2 : 8 giờ 30 phút