K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Bài này ghi các tỉ số hơi rối, cố gắng theo dỏi nha, khi sử dụng định lí Thales, hay phân tách các cạnh tôi ko chỉ ra vì để cho phép biến đổi được liên tục. 
******************************* 
Gọi M là trung điểm BC. có AM/AG = 3/2 
Qua B dựng đường thẳng song song với ED, cắt AC tại K. 
ko giãm tính tổng quát, giã sử K nằm trên đoạn AC. 
<<Nếu ngược lại K nằm trên tia đối của tia CA thì ta chọn ngược lại từ C >> 

Gọi H là trung điểm KC => MH // BK (tính chất đường trung bình) 

Ta có: AB / AD = AK / AE (1) 

mặt khác: 

AC / AE = (AH + HC)/AE = AH / AE + HC / AE = 

= AM / AG + HC / AE = 3/2 + KH / AE (2) 

(1) + (2): 
AB / AD + AC / AE = 3/2 + AK / AE + KH / AE = 3/2 + (AK + KH) / AE = 

= 3/2 + AH / AE = 3/2 + AM / AG = 3/2 + 3/2 = 3

Dấu sao gì mà lắm vậy bạn KODOSHINICHI?

5 tháng 4 2018

Kéo dài AG cắt BC tại E

Kẻ $BM//A'C', CN//A'C' (M, N \in AE)$

Xét $\Delta ABM$ có $BM//GC' \Longrightarrow \dfrac{BM}{GC'}=\dfrac{AM}{AG}$

$CN//GA' \Longrightarrow \dfrac{CN}{GA'}=\dfrac{EN}{EG}=\dfrac{2EN}{AG}$

$CN//GB \Longrightarrow \dfrac{CN}{GB'}=\dfrac{AN}{AG}$

CM: $\Delta BME=\Delta CNE(g-c-g) \Longrightarrow BM=CN; EN=EM$

$\Longrightarrow \dfrac{CN}{GA'}+\dfrac{CN}{GB'}=\dfrac{2EN}{AG}+ \dfrac{AN}{AG}=\dfrac{2EN+AN}{AG}=\dfrac{AM}{AG}$

$\Longrightarrow \dfrac{CN}{GA'}+\dfrac{CN}{GB'}= \dfrac{BM}{GC'}$

$\Longrightarrow \dfrac{1}{GA'}+\dfrac{1}{GB'}= \dfrac{1}{GC'}$

Mik ko hiểu bạn đag viết cái quái gì nữa!

6 tháng 2 2019

undefined

Y
6 tháng 2 2019

A B C O A' B' C' M N

+ Qua A vẽ đường thẳng song song với BC cắt BB' cà CC' lần lượt ở N,M

+ ΔAB'N có AN // BC

\(\Rightarrow\dfrac{CB'}{B'A}=\dfrac{CB}{AN}\)

+ Tương tự : \(\dfrac{AC'}{C'B}=\dfrac{AM}{BC}\)

+ ΔAOM có AM // BC

\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AO}{OA'}\)

+ tương tự : \(\dfrac{AN}{BA'}=\dfrac{AO}{OA'}\)

\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AN}{BA'}\Rightarrow\dfrac{AN}{AM}=\dfrac{BA'}{A'C}\)

Do đó : \(\dfrac{AC'}{C'B}\cdot\dfrac{BA'}{A'C}\cdot\dfrac{CB'}{B'A}=\dfrac{AM}{BC}\cdot\dfrac{AN}{AM}\cdot\dfrac{BC}{AN}=1\)

9 tháng 2 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

9 tháng 2 2018

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha