K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tứ giác ABKC có

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{K}=360^0\)

\(\Rightarrow\widehat{K}=360^o-70^o-90^o-90^o\)

\(\Rightarrow\widehat{K}=110^o\)

Vậy \(\widehat{BKC}=110^0\)

21 tháng 7 2019

Bài 1: 

O y x A C B 70o D z

*) Ta có: AC // Ox

Oy cắt AC tại C, cắt Ox tại O   

Từ hai điều trên suy ra: \(\widehat{xOy}\)và \(\widehat{ACy}\)là 2 góc đồng vị bằng nhau

Mà \(\widehat{xOy}\)\(70^o\)=> \(\widehat{ACy}\)\(70^o\)

*) Ta có: BA // Oy

AC cắt BA tại A, cắt Oy tại C

Từ 2 điều trên suy ra: \(\widehat{ACy}=\widehat{DAz}\)(2 góc đồng vị bằng nhau)

=> \(\widehat{DAz}\)\(70^o\)

Ta có: \(\widehat{DAz}\)và \(\widehat{BAC}\)là 2 góc đối đỉnh

=> \(\widehat{BAC}\)\(70^o\)

Ta có: \(\widehat{BAC}\)\(\widehat{CAz}=180^o\)(2 góc kề bù)

=> \(\widehat{CAz}=110^o\)

Mà \(\widehat{CAz}\)và \(\widehat{BAD}\)là 2 góc đối đỉnh => \(\widehat{BAD}\)\(110^o\)

Vậy...

a) Gọi G, F lần lượt là chân đường vuông góc từ O kẻ xuống AB và AC

Ta có: O nằm trên đường trung trực của AB(gt)

mà OG⊥AB(gt)

nên G là trung điểm của AB

Ta có: O nằm trên đường trung trực của AC(gt)

mà OF⊥AC(gt)

nên F là trung điểm của AC

Ta có: \(AG=\dfrac{AB}{2}\)(G là trung điểm của AB)

\(AF=\dfrac{AC}{2}\)(F là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AG=AF

Xét ΔAGO vuông tại G và ΔAFO vuông tại F có 

AO chung

AG=AF(cmt)

Do đó: ΔAGO=ΔAFO(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{GAO}=\widehat{FAO}\)(hai góc tương ứng)

hay \(\widehat{BAO}=\widehat{CAO}\)

mà tia AO nằm giữa hai tia AB,AC

nên AO là tia phân giác của \(\widehat{BAC}\)(đpcm)

c) Xét ΔAOB và ΔAOC có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

AO chung

Do đó: ΔAOB=ΔAOC(c-g-c)

Suy ra: OB=OC(hai cạnh tương ứng)

Ta có: \(\widehat{ABC}+\widehat{KBC}=\widehat{ABK}\)(tia BC nằm giữa hai tia BA,BK)

nên \(\widehat{ABC}+\widehat{KBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{KCB}=\widehat{ACK}\)(tia CB nằm giữa hai tia CA,CK)

nên \(\widehat{ACB}+\widehat{KCB}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}+\widehat{KBC}=\widehat{ACB}+\widehat{KCB}\)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

Suy ra: KB=KC(hai cạnh bên)

Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)

Suy ra: \(\widehat{BCE}=\widehat{CBD}\)(hai góc tương ứng)

hay \(\widehat{HBC}=\widehat{HCB}\)

Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)(cmt)

nên ΔHBC cân tại H(Định lí đảo của tam giác cân)

Suy ra: HB=HC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: HB=HC(cmt)

nên H nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Ta có: KB=KC(cmt)

nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(6)

Từ (3), (4), (5) và (6) suy ra A,O,H,K thẳng hàng(đpcm)

21 tháng 2 2021

a) Gọi G, F lần lượt là chân đường vuông góc từ O kẻ xuống AB và AC

Ta có: O nằm trên đường trung trực của AB(gt)

mà OG⊥AB(gt)

nên G là trung điểm của AB

Ta có: O nằm trên đường trung trực của AC(gt)

mà OF⊥AC(gt)

nên F là trung điểm của AC

Ta có: AG=AB2AG=AB2(G là trung điểm của AB)

AF=AC2AF=AC2(F là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AG=AF

Xét ΔAGO vuông tại G và ΔAFO vuông tại F có 

AO chung

AG=AF(cmt)

Do đó: ΔAGO=ΔAFO(cạnh huyền-cạnh góc vuông)

Suy ra: ˆGAO=ˆFAOGAO^=FAO^(hai góc tương ứng)

hay ˆBAO=ˆCAOBAO^=CAO^

mà tia AO nằm giữa hai tia AB,AC

nên AO là tia phân giác của ˆBACBAC^(đpcm)

c) Xét ΔAOB và ΔAOC có 

AB=AC(ΔABC cân tại A)

ˆBAO=ˆCAOBAO^=CAO^(cmt)

AO chung

Do đó: ΔAOB=ΔAOC(c-g-c)

Suy ra: OB=OC(hai cạnh tương ứng)

Ta có: ˆABC+ˆKBC=ˆABKABC^+KBC^=ABK^(tia BC nằm giữa hai tia BA,BK)

nên ˆABC+ˆKBC=900ABC^+KBC^=900(1)

Ta có: ˆACB+ˆKCB=ˆACKACB^+KCB^=ACK^(tia CB nằm giữa hai tia CA,CK)

nên ˆACB+ˆKCB=900ACB^+KCB^=900(2)

Từ (1) và (2) suy ra ˆABC+ˆKBC=ˆACB+ˆKCBABC^+KBC^=ACB^+KCB^

mà ˆABC=ˆACBABC^=ACB^(hai góc ở đáy của ΔABC cân tại A)

nên ˆKBC=ˆKCBKBC^=KCB^

Xét ΔKBC có ˆKBC=ˆKCBKBC^=KCB^(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

Suy ra: KB=KC(hai cạnh bên)

Xét ΔBEC vuông tại E và ΔCDB vuông tại D có 

BC chung

ˆEBC=ˆDCBEBC^=DCB^(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)

Suy ra: ˆBCE=ˆCBDBCE^=CBD^(hai góc tương ứng)

hay ˆHBC=ˆHCBHBC^=HCB^

Xét ΔHBC có ˆHBC=ˆHCBHBC^=HCB^(cmt)

nên ΔHBC cân tại H(Định lí đảo của tam giác cân)

Suy ra: HB=HC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: OB=OC(cmt)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: HB=HC(cmt)

nên H nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Ta có: KB=KC(cmt)

nên K nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(6)

Từ (3), (4), (5) và (6) suy ra A,O,H,K thẳng hàng(đpcm)

21 tháng 2 2021

AK là tia phân giác của góc A ở đâu vậy?

 

28 tháng 1 2018

Nhật Tân

Thứ 6, ngày 06/01/2017 14:54:35

Cho tam giác ABC cân tại A,góc A = 90 độ,Các đường trung trực của AB AC cắt nhau tại O,Chứng minh AO là phân giác của góc A,qua B kẻ đường thẳng vuông góc với AB,qua C kẻ đường thẳng vuông góc với AC,Chứng minh AK là phân giác của góc A,BD vuông góc với AC,CE vuông góc với AB,BD cắt CE tại H,Chứng minh bốn điểm A O K H thẳng hàng,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

p/s: kham khảo

10 tháng 3 2023

Kẻ `KI ⊥ BC(I in BC)`

Đặt `BG` là p/g của góc ngoài tại `hat(ABC)` 

`CH` là p/g của góc ngoài tại `hat(ACB)`

+, Có : `BG` là p/g của góc ngoài tại `hat(ABC)` 

`=>hat(B_1)=hat(B_2)`

mà `hat(B_1)=hat(B_3);hat(B_2)=hat(B_4)` ( đối đỉnh )

nên `hat(B_3)=hat(B_4)`

+, Có : `CH` là p/g của góc ngoài tại `hat(ACB)` 

`=>hat(C_1)=hat(C_2)` 

mà `hat(C_1)=hat(C_3);hat(C_2)=hat(C_4)` ( đối đỉnh )

nên `hat(C_3)=hat(C_4)`

Xét `Delta BEK` và `Delta BIK` có :

`{:(hat(F)=hat(I_1)(=90^0)),(KB-chung),(hat(B_3)=hat(B_4)(cmt)):}}`

`=>Delta BEK=Delta BIK(c.h-g.n)`

`=>KE=KI` ( 2 cạnh t/ứng ) (1)

Xét `Delta KIC` và `Delta KEC` có :

`{:(hat(I_2)=hat(E)(=90^0)),(KC-xhung),(hat(C_3)=hat(C_4)(cmt)):}}`

`=>Delta KIC=Delta KEC(c.h-g.n)`

`=> KI=KE` ( 2 cạnh t/ứng ) (2)

Từ (1) và (2) `=>KF=KE(=KI)(đpcm)`