K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{#ID07 - DNfil}\)

Đặt `A = 2 + 2^2 + 2^3 + ... + 2^100`

Ta có:

`A = (2 + 2^2) + (2^3 + 2^4) + ... + (2^99 + 2^100)`

`= (2 + 2^2) + 2^2 (2 + 2^2) + ... + 2^98 (2 + 2^2)`

`= (2 + 2^2)(1 + 2^2 + ... + 2^98)`

`= 6(1 + 2^2 + ... + 2^98)`

Vì `6(1 + 2^2 + ... + 2^98) \vdots 6`

`=> A \vdots 6`

Vậy, `A \vdots 6.`

22 tháng 11 2015

A=2^1(1+2)+2^3*(2+1)+2^5(2+1)+2^7*(2+1)+2^9*(2+1)=3*(2+2^3+2^5+2^7+2^9)  chia hết cho 3
 

23 tháng 11 2015

A = 2 + 22 + 23 + ..... + 29 + 210

A = (2 + 22) + (23 + 24) + ... + (29 +  210)

A = (2.1 + 2.2) + (23.1 + 23.2) + ......+(29.1 + 29.2)

A = 2.(1+2) + 23.(1+2) + ..... + 29.(1+2)

A = 2.3 + 23.3 + ...... + 29.3

A = 3.(2+23+.....+29)

Vậy A chia hết cho 3

3 tháng 12 2015

A=(2 + 22+ 23) + (24 + 25 +26) +......+(261+262+263)

A = 14 + 23(2 + 22 + 23) + .............+ 260(2 + 22 + 23)

A=14+23.14 + ..................+ 260 . 14

A= 14(23+..... +260) chia hết cho 14 ( vì 14 chia hết cho 14)

Vậy A chia hết cho 14

 

4 tháng 8 2023

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

18 tháng 10 2023

á à bạn Đức

 

21 tháng 10 2023

ai biết

31 tháng 12 2021

\(A=2\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=3\cdot\left(2+...+2^{99}\right)⋮6\)

18 tháng 3 2022

có chắc chắn là đúng ko đấy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

?