Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow4x\left(x^2-9\right)=0\\ \Rightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\\ \Rightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Rightarrow2\left(x-3\right)4\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a) \(\Rightarrow4x\left(x^2-9\right)=0\)
\(\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(4x-4\right)=0\)
\(\Rightarrow8\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )
<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84
<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192
<=> -80x = -588
<=> x = -588/-80 = 147/20
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6
<=> x2 + 5x + 6 - x2 - 3x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x
<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x
<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2
<=> -5x2 - 2x = -3
<=> -5x2 - 2x + 3 = 0
<=> -( 5x2 + 2x - 3 ) = 0
<=> -( 5x2 + 5x - 3x - 3 ) = 0
<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0
<=> -( x + 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)
d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3
<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3
<=> 4x2 - 6x = 11
<=> 4x2 - 6x - 11 = 0
=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))
vẫn làm được nha quỳnh !
\(4x^2-6x-11=0\)
\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)
\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)
\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)
A)\(x\left(x-1\right)+6\left(x-3\right)\left(x+3\right)\)
\(=x^2-x+6\left(x^2-9\right)\)
\(=x^2-x+6x^2-54\)
\(=7x^2-x-54\)
F.\(\left(2-x\right)\left(2+x\right)-2x\left(x-7\right)+x\left(x+1\right)\)
\(=4-x^2-2x^2+14x+x^2+x\)
\(=-2x^2+15x+4\)
3x2 +2x +x2 +2x +1 - 4x2 + 25 +12 = 0
4x = -28
x = -7
( bn hãy tisk cho bn thảo nguyên xanh,chắc bn nhầm dấu thui)
x(3x+2)+(x+1)2-(2x-5)(2x+5)=-12
x(3x+2)+(x+1)2-4x2+25=-12
x(3x+2)+(x+1-2x)(x+1+2x)=-37
x(3x+2)+(1-x)(3x+1)=-37
x(3x+1)+x+(1-x)(3x+1)=-37
(3x+1)(x+1-x)+x=-37
(3x+1)x+x=-37
x(3x+2)=-37
Mình chỉ biết đến đây thôi! Nếu x thuộc Z thì mình mới làm hết được!
Mk xin phép ko vt lại đề nx
\(\Rightarrow A=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]\div x+1\)
\(\Rightarrow A=3x-2-\left(2x-5\right)\left(x-1\right)\)
\(\Rightarrow x=\dfrac{1}{2}\)
\(\Rightarrow A=\dfrac{3}{2}-2-\left(1-5\right)\left(\dfrac{1}{2}-1\right)=-\dfrac{5}{2}\)
\(A\))\(\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)
\(x^2-2x+1+x^2-6x+9-2x^2+1=0\)
\(11-8x=0\)
\(\Rightarrow x=\frac{11}{8}\)
\(B\))\(\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)+2x=0\)
\(x^3-1-x^3-1+2x=0\)
\(2x-2=0\)
\(\Rightarrow x=1\)
\(A=\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)
\(\Rightarrow x^2-2x+1+x^2-6x+9-2x^2+1=0\)
\(\Rightarrow\left(x^2+x^2-2x^2\right)+\left(-2x-6x\right)+\left(1+9+1\right)\)
\(\Rightarrow-8x+12=0\Leftrightarrow x=\frac{-11}{-8}=\frac{11}{8}\)
\(B=\left(x-1\right).\left(x^2+x-1\right)-\left(x+1\right).\left(x^2-x+1\right)+2x=0\)
\(\Rightarrow x.\left(x^2+x-1\right)-x^2-x+1-x.\left(x^2-x+1\right)-x^2+x-1+2x=0\)
\(\Rightarrow x^3+x^2-1-x^2-x+1-x^3+x^2-x-x^2+x-1+2x=0\)
\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(-1+1-1\right)+\left(-x-x+x\right)+2x=0\)
\(\Rightarrow-1+x=0\Leftrightarrow x=1\)
\(C=\left(x-5\right).\left(x-5\right)+\left(2x+1\right)^2-3x^2=0\)
\(\Rightarrow x.\left(x-5\right)-5.\left(x-5\right)+\left(2x\right)^2+2.2x.1+1^2-3x^2=0\)
\(\Rightarrow x^2-5x-5x+25+4x^2+4x+1-3x^2=0\)
\(\Rightarrow\left(x^2-3x^2+4x^2\right)+\left(-5x-5x+4x\right)+26=0\)
\(\Rightarrow2x^2-6x+26=0\Leftrightarrow x=\)
\(D=\left(x-1\right)-9=0\Leftrightarrow x-1=9\Leftrightarrow x=10\)
\(1,\\ a,=x^2+6x+9-x^2-6x=9\\ b,=3x-1+6x-9x^2+x-10=-9x^2+10x-11\\ 2,\\ a,=4xy\left(x^2-2xy+y^2\right)=4xy\left(x-y\right)^2\)
( 3x - 1 )( x + 3 ) + 9x2 - 1 = 0
<=> 3x2 + 9x - x - 3 + 9x2 - 1 = 0
<=> 12x2 + 8x - 4 = 0
<=> 4( 3x2 + 2x - 1 ) = 0
<=> 3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> ( 3x2 + 3x ) - ( x + 1 ) = 0
<=> 3x( x + 1 ) - 1( x + 1 ) = 0
<=> ( 3x - 1 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy S = { 1/3 ; -1 }
\(\frac{x+1}{3}>\frac{3x-2}{5}\)
\(\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Leftrightarrow5x+5>9x-6\)
\(\Leftrightarrow5x-9x>-6-5\)
\(\Leftrightarrow-4x>-11\)
\(\Leftrightarrow x< \frac{11}{4}\)
Bài làm:
a) \(\left(3x-1\right)\left(x+3\right)+9x^2-1=0\)
\(\Leftrightarrow3x^2+8x-3+9x^2-1=0\)
\(\Leftrightarrow12x^2+8x-4=0\)
\(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(x+1\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-1;\frac{1}{3}\right\}\)
b) \(\frac{x+1}{3}>\frac{3x-2}{5}\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Rightarrow5x+5>9x-6\)
\(\Leftrightarrow4x< 11\)
\(\Rightarrow x< \frac{11}{4}\)
\(\frac{1}{x+2}+\frac{5}{x-2}=\frac{3x-12}{x^2-4}\)
ĐKXĐ \(x\ne\pm2\)
\(\frac{1}{x+2}+\frac{5}{x-2}=\frac{3x-12}{x^2-4}\)
\(\Leftrightarrow\frac{x-2+5\left(x+2\right)}{x^2-4}=\frac{3x-12}{x^2-4}\)
\(\Leftrightarrow x-2+5x+10=3x-12\)
\(\Leftrightarrow6x+8=3x-12\)
\(\Leftrightarrow3x=20\Leftrightarrow x=\frac{20}{3}\left(tm\right)\)