K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

\(25x^2y^4+30xy^2z+9z^2=\left(5xy^2\right)^2+2.5xy^2.3z+\left(3z\right)^2=\left(5xy^2+3z\right)^2\)

\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=\left(\frac{4}{3}x\right)^2+2.\frac{4}{3}x.\frac{3}{2}yz^2+\left(\frac{3}{2}yz^2\right)^2=\left(\frac{4}{3}x+\frac{3}{2}yz^2\right)^2\)

\(\frac{9}{25}x^2+\frac{12}{35}xy+\frac{4}{49}y^2=\left(\frac{3}{5}x\right)^2+2.\frac{3}{5}x.\frac{2}{7}y+\left(\frac{2}{7}y\right)^2=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2\)( tự thay vào tính nhé )

\(\frac{25}{16}u^4y^2+\frac{1}{5}u^2+y^3+\frac{4}{625}y^4=\left(\frac{5}{4}u^2y\right)^2+2.\frac{5}{4}u^2y.\frac{2}{25}.y^2+\left(\frac{2}{25}y^2\right)^2=\left(\frac{5}{4}u^2y+\frac{2}{25}y^2\right)^2\)( tự thay vào tính nhé )

Tham khảo nhé~

7 tháng 9 2018

1)\(25x^2y^4+30xy^2z+9z^2=\left(5xy^2+3z\right)^2\)

\(\dfrac{16}{9}x^2+4xyz^2+\dfrac{9}{4}y^2z^4=\left(\dfrac{4}{3}x+\dfrac{3}{2}yz^2\right)^2\)

2)

a)\(\dfrac{9}{25}x^2+\dfrac{12}{35}xy+\dfrac{4}{49}y^2=\left(\dfrac{3}{5}x+\dfrac{2}{7}y\right)^2=\left(\dfrac{3}{5}.5+\dfrac{2}{7}.\left(-7\right)\right)^2=\left(3-2\right)^2=1\)b)\(\dfrac{25}{16}u^4v^2+\dfrac{1}{5}u^2v^3+\dfrac{4}{625}v^4\)

\(=\left(\dfrac{5}{4}u^2v+\dfrac{2}{25}v^2\right)^2=\left(\dfrac{5}{4}.\dfrac{4}{25}.\left(-5\right)+\dfrac{2}{25}.\left(-5\right)^2\right)^2\)

\(=\left(-1+2\right)^2=1\)

24 tháng 6 2018

a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)

\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)

a) \(\left(5xy^3\right)^2-2.5xy^3.6yz^2+\left(6yz^2\right)^2\)=\(\left(5xy^3-6yz^2\right)^2\)

b) \(\left(\frac{1}{3}u^2v^3\right)^2-2.\frac{1}{3}u^2v^3.\frac{1}{2}u^3v+\left(\frac{1}{2}u^3v\right)^2\)=\(\left(\frac{1}{3}u^2v^3-\frac{1}{2}u^3v\right)^2\)

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Bài 50:

\((5x+3y)^2=25x^2+30xy+9y^2\)

Bài 51:

\((\frac{1}{3}xy^m+4x^2y)^2=\frac{1}{9}x^2y^{2m}+2.\frac{1}{3}xy^m.4x^2y+16x^4y^2\)

\(=\frac{1}{9}x^2y^{2m}+\frac{}{3}x^3y^{m+1}+16x^4y^2\)

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Bài 54:

\(25x^2y^4+30xy^2z+9z^2=(5xy^2)^2+2.(5xy^2).(3z)+(3z)^2\)

\(=(5xy^2+3z)^2\)

Bài 55:

\(\frac{16}{9}x^2+4xyz^2+\frac{9}{4}y^2z^4=(\frac{4}{3}x)^2+2.(\frac{4}{3}x).(\frac{3}{2}yz^2)+(\frac{3}{2}yz^2)^2\)

\(=(\frac{4}{3}x+\frac{3}{2}yz^2)^2\)

Bạn chỉ cần nhớ rõ hằng đẳng thức đáng nhớ số 1 là được.

7 tháng 8 2019

a)\(\frac{17xy^3z^4}{34x^3y^2z}\)=\(\frac{17yz^3}{34x^2}\)

7 tháng 8 2019

b)\(\frac{x^2-25}{5x-x^2}\)=\(\frac{\left(x-5\right)\left(x+5\right)}{x\left(5-x\right)}\)=\(\frac{\left(x-5\right)\left(x+5\right)}{-x\left(x-5\right)}\)=\(\frac{-x-5}{x}\)

c)\(\frac{y^2-xy}{4xy-4y^2}\)=\(\frac{y\left(y-x\right)}{4y\left(x-y\right)}=\frac{-y\left(x-y\right)}{4y\left(x-y\right)}=\frac{-1}{4}\)

d)\(\frac{x^2+xz-xy-yz}{x^2+xz+xy+yz}=\frac{x\left(x+z\right)-y\left(x+z\right)}{x\left(x+z\right)+y\left(x+z\right)}=\frac{\left(x+z\right)\left(x-y\right)}{\left(x+z\right)\left(x+y\right)}=\frac{x-y}{x+y}\)

2 tháng 10 2019

\(\frac{12}{5}x^2y^2-9x^4-\frac{4}{25}y^4\)

\(=-\left(9x^4-\frac{12}{5}x^2y^2+\frac{4}{25}y^4\right)\)

\(=-\left[\left(3x^2\right)^2-2.3x^2.\frac{2}{5}y^2+\left(\frac{2}{5}y^2\right)^2\right]\)

\(=-\left(3x^2-\frac{2}{5}y^2\right)^2.\)

Chúc bạn học tốt!

8 tháng 7 2016

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left[\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right):\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

\(P=\left(\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(x+y\right)\left(2y-x\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\right):\frac{2x^2+y+2}{x+1}\)

\(P=\left(\frac{2x^2+y-2}{2y-x}.\frac{x+1}{2x^2+y-2}\right).\frac{1}{x+1}\)

\(P=\frac{1}{2y-x}\)

Tại \(x=-1,76\) và \(y=\frac{3}{25}\) thì giá trị của \(Q=\frac{1}{2}\)

 

8 tháng 7 2016

thanks hihi

8 tháng 7 2016

Đặt \(A=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)

      \(B=\frac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

    \(C=\frac{x+1}{2x^2+y+2}\)

Ta có: 

A = \(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-y^2-xy-y^2}=\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

=>A=\(\frac{x^2-y^2+x^2+y^2+y-2}{\left(2y-x\right)\left(x+y\right)}=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}\)

B=\(\frac{\left(2x^2\right)^2+2.2x^2.y+y^2-4}{x^2+xy+x+y}=\frac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}=\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)

=>\(P=\left(A:B\right):C\)

       \(=\left[\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}:\frac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+y\right)\left(x+1\right)}\right]:\frac{x+1}{2x^2+y+2}\)

       \(=\frac{2x^2+y-2}{\left(2y-x\right)\left(x+y\right)}.\frac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}.\frac{2x^2+y+2}{x+1}\)

        \(=\frac{1}{2y-x}\)

=>\(P=\frac{1}{2y-x}\)

Thế x=-1,76 và y=3/25 vào P

=>\(P=\frac{1}{2.\frac{3}{25}-1,76}=\frac{1}{2}\)