Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,x-1 là ước của 5
\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{2;0;6;-4\right\}\)
Vậy.......................
d,\(7⋮3x+2\)
\(\Rightarrow3x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{-\frac{1}{3};-1;\frac{5}{3};-3\right\}\)
Vậy.........................
e;\(x+2⋮x-1\Rightarrow\left(x-1\right)+3⋮x-1\)
\(\Rightarrow3⋮x-1\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{2;0;4;-2\right\}\)
Vậy..........................
f;\(2x+1⋮x-3\Rightarrow2\left(x-3\right)+7⋮x-3\)
\(\Rightarrow7⋮x-3\Rightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow4;2;10;-4\)
Vậy.............................
g,\(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+......+\left(x-99\right)+\left(x-100\right)=-5750\)
\(\Rightarrow\left(x+x+x+.....+x+x\right)-\left(1+2+3+......+99+100\right)=-5750\)
\(\Rightarrow100x-5050=-5750\)
\(\Rightarrow100x=-700\)
\(\Rightarrow x=-7\)
Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
câu 1 :
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này khụng khú :
Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*)
Từ (*) => ab = mnd2 ; [a, b] = mnd
=> (a, b).[a, b] = d.(mnd) = mnd2 = ab
=> ab = (a, b).[a, b] . (**)
ước chung lớn nhất của hai số nguyên tố bất kì là : 1
Vì mỗi số nguyên đều có hai ước là 1 và chính nó .
ước chung lớn nhất cảu mỗi số nguyên là 1
Vì mọi số nguyên tố đều có 2 ước là 1 và chính nó