K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)

\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)

\(\Rightarrow A=2^{101}-1\)

\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)

\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)

\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)

\(\Rightarrow24B=5^{101}-5\)

\(\Rightarrow B=\frac{5^{101}-5}{24}\)

7 tháng 12 2017

bn hâm mộ cùng phim với mink a

Nhiều thế bạn

Đăng từ từ thôi chứ

Đăng nhiều thế này làm sao mà xong kịp được

23 tháng 1 2017

có nhiều lắm đâu

9 tháng 8 2019

\(5^x+5^{x+2}=650\)

\(\Rightarrow5^x\left(1+5^2\right)=650\)

\(\Rightarrow5^x.26=650\)

\(\Rightarrow5^x=25\Rightarrow x=2\)

Vậy...

9 tháng 8 2019

Bài 2 :

a)  \(A=1+2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2A=2+2^2+2^3+2^4+2^5+...+2^{100}+2^{101}\)

\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)

\(A=2^{101}-1\)

=))

3 tháng 10 2015

2011^2002 = 2011^2000 . 2011^2  = (2011^5)^400 . 2011^2 = (.......5)^400 . ....1 = .....5  .   ......1 = ........5                                                     2009^2000 = (2009^5)^400 = tận cùng là 9 hoặc 1                                                                                                                                                                vậy A ko chia hết cho 5                                                                                                                                                     B =   2 + 2^2 + 2^3 + ..... + 2^100                                                                                                                                                             2B =        2^2 + 2^3 +...................+ 2^101                                                                                                                                                   B = 2^101 - 2  = 2^100 . 2 -2   = (2^4)^25 . 2 - 2  =   16^25 .2 - 2  =  .....6 . 2 -2  =   .......2 - 2 = .......0                                                             vậy B chia hết cho 2                                                                                                                                                                                                 

14 tháng 2 2018

\(a)\) Đặt \(A=5+5^2+5^3+5^4+...+5^{99}+5^{100}\)ta có : 

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(A=5.6+5^3.6+...+5^{99}.6\)

\(A=6.\left(5+5^3+...+5^{99}\right)\) \(⋮\) \(6\)

Vậy \(A⋮6\)

14 tháng 2 2018

\(b)\) Đặt \(B=2+2^2+2^3+2^4+...+2^{99}+2^{100}\) ta có : 

\(B=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(B=2\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(B=2.31+...+2^{96}.31\)

\(B=31.\left(2+2^6+...+2^{96}\right)\) \(⋮\) \(31\)

Vậy \(B⋮31\)

Năm mới zui zẻ ^^