K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2015

A = 2.22 + 3.23 + 4.24 + ... + n.2n 

2.A = 2.2+ 3.2+ 4.2+ ...+ n.2n+1

=> A - 2.A = 2.22 + (3.2- 2.23)  + (4.2- 3.24) + ...+ (n - n + 1).2- n.2n+1

=> A = 2.2+ 2+ 2+ ..+ 2- n.2n+ 1  = 22 + (2+ 2+ ....+ 2n+ 1) - (n+1).2n+1

=> A =  - 22 -  (2+ 2+ ....+ 2n+ 1) + (n+1).2n+1

Tính B = 2+ 2+ ....+ 2n+ 1 => 2.B =  2+ ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22

Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n

Theo bài cho  A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 2 = 512 => n = 513

Vậy.............

10 tháng 10 2016

n= 513, tui chỉ biết đáp án nhưng không biết cách làm

23 tháng 1 2020

Đặt S = 2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n 

<=> S = 2S - S = (2.23 + 3.24 +  4.25 + .... + (n - 1).2n + n. 2n + 1) - (2.22 + 3.23 + 4.24 + ... + (n - 1).2n - 1 + n.2n)

                S = (2.23 - 3.23) + (3.24 - 4.24) + (4.25 - 5.25) + .... + [(n - 1).2n - n.2n] + n.2n + 1 - 2.22

                   = -(23 + 24 + 25 + ... + 2n) + n.2n + 1 - 8

Đặt A = 23 + 24 + 25 + ... + 2n

  <=> 2A - A = (24 + 25 + 26 + ... + 2n + 1) - (23 + 24 + 25 + ... + 2n

  <=> A = 2n + 1 - 23 

Khi đó S = - 2n - 1 + 23 + n.2n - 1 - 8

              = 2n - 1.(n - 1) = 2n + 34

         => n - 1 = 2n + 34 : 2n - 1

          => n - 1 = 2n + 34 - n + 1

          => n - 1 = 235

          => n = 235 + 1

23 tháng 1 2020

N=34359738369 nha

10 tháng 6 2016

\(\frac{1}{4}\times\frac{2}{6}\times\frac{3}{8}\times...\times\frac{30}{62}\times\frac{31}{64}=2^x\)

\(\Rightarrow\) \(\frac{1\times2\times3\times...\times30\times31}{4\times6\times8\times...\times62\times64}=2^x\)

\(\Rightarrow\frac{1}{2^{31}}=2^x\)\(\Rightarrow1=2^x\times2^{31}\)

\(\Rightarrow2^{x+31}=2^0\)

\(\Rightarrow x+31=0\Rightarrow x=\left(-31\right)\)

2 tháng 4 2017

Vân Anh thế còn \(\frac{1}{64}\)đâu