Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi 2 số là a và b, ta có: Tổng 2 số và tích 2 số đối nhau nên:
a + b = -ab
<=> a + b + ab = 0
<=> a + ab + b + 1 = 1
<=> a (b + 1) + (b + 1) = 1
<=> (b + 1) (a + 1) = 1
Mà 1 = 1 . 1 = (-1) . (-1) nên các trường hợp là:
a + 1 = 1 và b + 1 = 1 => a = b = 0
a + 1 = -1 và b + 1 = -1 => a = b = -2
2)a) vì 8 = 8.1 = 1.8 = 2.4 = 4.2
Vì 2y + 1 là số lẻ nên chỉ có 1 phương án là:
2y + 1 = 1 và x - 2 = 8 => y = 0 và x = 10
2b) 20 = 20 . 1 = 1 . 20 = 2.10 = 10.2 = 4.5 = 5.4
Mà 4y + 1 là số lẻ nên chỉ có thể có 2 trường hợp sau:
+) 4y + 1 = 1 và 8 - x = 20 => y = 0 và x = -12
+) 4y + 1 = 5 và 8 - x = 4 => y = 1 và x = 4
1. Gọi số cần tìm là xy (x,y thuộc Z)
Ta có: x+y=xy
=> x-xy+y=0
=> x(1-y)+y-1=-1
=> x(1-y)-(1-y)=-1
=> (x-1)(1-y)=-1
=> x-1, 1-y thuộc Ư(-1)={-1,1}
Ta có bảng sau:
x-1 | -1 | 1 |
1-y | 1 | -1 |
x | 0 | 2 |
y | 0 | 2 |
Vậy (x,y)=(0,0);(2,2)
Ta có x+x =-x^2 ,<=> x^2 +2x = 0 <=> x =0 và x= -2 so với giả thiết ta chỉ nhận x =-2
Hai số phải tìm là -2 và -2
Bài 1:
Vì x > y > 0 nên x và y đều là số tự nhiên. Khi x, y thuộc tập hợp N, ta có |x| - |y| = x - y.
Trong trường hợp này ta có |x| -|y| = x - y = 100. Vậy x - y = 100.
1a, xy+3x-7y-21=0
<=>x(y+3)-(7y+21)=0
<=>x(y+3)-7(y+3)=0
<=>(x-7)(y+3)=0
1b, xy+3x-2y=6
<=>(xy+3x)-2y-6=0
<=>x(y+3)-2(y+3)=0
<=>(x-2)(y+3)=0
GỌi hai số tự nhiên bất kì là a, b
Theo bài ra ta có : (a + b) = -(a.b)
=> a + b = -a . b
=> a + b + ab = 0
=> a(b + 1) + b + 1 = 1
=> a(b + 1) + (b + 1) = 1
=> (a + 1)(b + 1) = 1
Xét ước 1 là xong nhé !
Ta có : 2x + xy - 3y = 18
=> x(y + 2) - 3y = 18
=> x(y + 2) - 3y - 6 = 18 - 6
=> x(y + 2) - 3(x + 2) = 12
=> (x - 3)(y + 2) = 12
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)
Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6)
Lập bảng xét 12 trường hợp
x - 3 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y + 2 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | 4 | 15 | 2 | -9 | 6 | 7 | 0 | -1 | 5 | 9 | 1 | -3 |
y | 10 | -1 | -14 | -3 | 2 | 1 | -6 | -5 | 4 | 0 | -8 | -4 |
Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;
(1 ; -8) ; (-3 ; -4)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)
=> \(x\in\left\{\pm3;\pm4\right\}\)
TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{\pm3;\pm4\right\}\)
2x + xy - 3y = 18
<=> 2x + xy - 6 - 3y = 12
<=> ( 2x + xy ) - ( 6 + 3y ) = 12
<=> x( 2 + y ) - 3( 2 + y ) = 12
<=> ( x - 3 )( 2 + y ) = 12
Lập bảng :
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 7 | -1 | 9 | -3 | 15 | -9 |
2+y | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 10 | -14 | 4 | -8 | 2 | -6 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ta có 12 cặp ( x ; y ) thỏa mãn
( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 ) , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 )
XY-X-Y=2 thì XY-Y-X=X0-X=2
=> X.9=2
Nên X=2/9
cho mình một cái **** !!!!!