K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

1.    a)    = 16

b)   = 29x^2 + 29 - 29x^2  = 29 

2.   =x^2-2x+1   + y^2 - 2y + 1 = (x-1)^2   +  (y-1)^2  

b)  =  a^2+4a+4   +   b^2  +  4b  + 4   =  (a+2)^2   + (b+2)^2  

5 tháng 10 2016

bạn giải chi tiết cho mình đc k ? pls xin đáy và cảm ơn bạn vô cùng

28 tháng 7 2015

 

a) x2+10x+26+y2+2y

=x2+10x+25+y2+2y+1

=(x+5)2+(y+1)2

 

b) z2-6z+5-t2-4t

=z2-6z+9-t2-4t-4

=(z-3)2-(t2+4t+4)

=(z-3)2-(t+2)2

 

c)x2-2xy+2y2+2y+1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

 

d) 4x2-12x-y2+2y+8

=4x2-12x+9-y2+2y-1

=(2x-3)2-(y2-2y+1)

=(2x-3)2-(y-1)2

    

29 tháng 6 2018

bạn ơi , bạn lấy bài này ở đâu vậy bạn

10 tháng 5 2021

a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)

\(=\left(5x+\frac{1}{2}y\right)^2\)

b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)

c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)

\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)

d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)

\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)

\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)

3 tháng 9 2023

Có cái cc

12 tháng 10 2019

2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)

b) \(x^2+16x+64=\left(x+8\right)^2\)

c) \(x^3-8y^3=x^3-\left(2y\right)^3\)

\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)

d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)

13 tháng 7 2018

a, (x-y)^3 -(x+y)^3

= x^3 -3x^2 y +3xy^2 -y^3 -(x^3 +3x^2 y +3xy^2 +y^3)

= -6x^2 y -2 y^3

b, = x(x^2 -1) -(x^3 +1)

    = x^3 -x -x^3 -1

    = -x -1

c, = x^2 -10x +25 +x^2 + 10x+ 25 -2x^2

    = 50

d, = x^3 + 3x^2 y + 3xy^2 + y^3 -3x^2 y -3xy^2

    = x^3 + y^3

17 tháng 7 2018

Bài 1: Tìm giá trị nhỏ nhất của biểu thức sau
a) P= x2-6x+5
b) Q= 4x2+4x-1
c) M= x2-x
d) N=x2+x+4
e) H= x2+3x+5
f) F= x2-5x
Bài 2 Tính giá trị của biểu thức sau
a) x3+9x2+27x+27 tại x= -103
b)x3-45x2+75x tại x =25
c) x2+8x tại x= -14
Bài 3 Tìm x, biết
a) (x+3)2-x(3x+1)2+(2x+1)(4x2-2x+1-3x2) =54
b) (x-3)2 -(x-3)(x2+3x+9)+6(x+1)2+3x= -33
c) 6(x+1)2-2(x+1)3+2(x-1)(x2+x+1)=1

6 tháng 7 2018

III.

a)  \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)

\(\Leftrightarrow\)\(25x^2+10x+1-25x^2+9=30\)

\(\Leftrightarrow\)\(10x=20\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

b)  \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)

\(\Leftrightarrow\)\(9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)

\(\Leftrightarrow\)\(6x=-24\)

\(\Leftrightarrow\)\(x=-4\)

Vậy....

6 tháng 7 2018

II.

a) mk chỉnh lại đề câu a

  \(a^2-2a+1=\left(a-1\right)^2\)

b)  \(1-4a+4a^2=\left(1-2a\right)^2\)

c)  \(a^2+9-6a=\left(a-3\right)^2\)

d)  \(25a^2-20ab+4b^2=\left(5a-2b\right)^2\)

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0 2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức: \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\) Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\) 3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005 4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14 5. Tìm giá trị nhỏ nhất...
Đọc tiếp

1. Tìm các số x, y, z thỏa mãn x2 + 4y2 + 9z2 + 2x - 4y + 12z + 6 = 0
2. Cho 3 số a, b, c khác 0 thỏa mãn đẳng thức:
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
Tính giá trị của biểu thức: P = \(\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
3. Tìm giá trị nhỏ nhất của biểu thức: M = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
4. Tìm x, y, z thỏa mãn đẳng thức: x2 + 4y2 + z2 = 2x + 12y - 4z - 14
5. Tìm giá trị nhỏ nhất của biểu thức:
a) A = (x-1)(x+2)(x+3)(x+6)
b) B = x2 - 2x + y2 + 4y + 8
c) C = x2 - 4x + y2 - 8y + 6
d) D = x2 - 4xy + 5y2 + 10x - 22y + 28
6. Cho a + b = S và ab = P. Hãy biểu diễn theo S và P, các biểu thức sau đây:
a) A = a2 + b2
b) B = a3 + b3
c) C = a4 + b4
7. Chứng minh rằng:
a) a2 ( a + 1) + 2a ( a + 1 ) chia hết cho 6 với a thuộc Z
b) a ( 2a - 3 ) - 2a ( a + 1 ) chia hết cho 5 với mọi a thuộc Z
c) x2 + 2x + 2 > 0 với x thuộc Z
d) -x2 + 4x - 5 < 0 với x thuộc Z
8. Cho x2 + 2y + 1 = 0; y2 + 2z + 1 = 0 và z2 + 2x + 1 = 0
Tính A = x2000 + y2000 + z2000
9. Tìm GTNN của các biểu thức sau:
a) A = x2 + 2y2 - 2xy + 2x - 10y
b) B = x2 + 6y2 + 14z2 - 8yz + 6zx - 4xy
c) C = x2 - 2xy + 6y2 - 12x + 2y + 45
d) D = x2 - 2xy + 3y2 - 2x - 10y + 20
10. Tìm GTLN của E = -x2 + 2xy - 4y2 + 2x + 10y - 3
11. Tìm các số nguyên x, y, z thỏa mãn 10x2 + 20y2 + 24xy + 8x -24y + 51 \(\le\) 0
12. Cho 3 số x, y, z thỏa mãn điều kiện x + y + z = 0 và xy + yz + xz = 0
Hãy tính giá trị của biểu thức: S = ( x - 1 )1995 + y1996 + ( z + 1 )1997
13. Chứng minh rằng: Với mọi x thuộc Q thì giá trị của đa thức:
M = ( x + 2 )( x + 4 )( x + 6)( x + 8) + 16 là bình phương của 1 số hữu tỉ.
14. Cho x + y + z = 0, với x, y, z khác 0
Tính giá trị của biểu thức: K = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
15. Tìm Min, Max của biểu thức: H = \(\frac{2x^2+4x+5}{x^2+1}\)
16. Cho a, b, c là độ đài 3 cạnh của 1 tam giác.
CMR nếu ( a + b + c )2 = 3( ab + ac + bc ) thì tam giác đó là tam giác đều
17. Tìm giá trị nguyên của x, y trong đẳng thức 2x3 + xy = 7
18.Tìm x biết:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
19. Tìm GTNN của biểu thức: P = x4 + 2x3 + 3x2 + 2x + 1

7
25 tháng 9 2019

13.

M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)

\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)

\(=\left(x^2+10x+20\right)^2-16+16\)

\(=\left(x^2+10x+20\right)^2\) là một số chính phương

NV
24 tháng 9 2019

Nhiều quá, nhìn đã thấy ớn lạnh :(

Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.

30 tháng 10 2020

Bài 1:

1.1

a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)

\(=x^2-y^2+2x^2-x+y^2+y\)

\(=3x^2-x+y\)

b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:

\(A=3\cdot1^2-1+2018\)

\(=2+2018=2020\)

Vậy: Khi x=1 và y=2018 thì A=2020

1.2

a) Ta có: \(2x^2\left(x^2-3x+1\right)\)

\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)

\(=2x^4-6x^3+2x^2\)

b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)

\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)

\(=12x^3+6x^2-6x-6x^2-3x+3\)

\(=12x^3-9x+3\)

1.3

a) Ta có: \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

b) Ta có: \(x^2-xy-8x+8y\)

\(=x\left(x-y\right)-8\left(x-y\right)\)

\(=\left(x-y\right)\left(x-8\right)\)

30 tháng 10 2020

1.1

a) A= (x+y).(x-y) + x(2x-1) + y(y+1)

= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y

b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:

A= 3.12 - 1+ 2018 = 2020

1.3

a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2

b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).

Xin lỗi nha, tớ không biết làm bài 1.2.

Chúc bạn học tốt!!