K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)

17 tháng 10 2023

b: Sửa đề: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)(1)

ĐKXĐ: \(x>=5\)

\(\left(1\right)\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

c: ĐKXĐ: \(\dfrac{3x-2}{x+1}>=0\)

=>\(\left[{}\begin{matrix}x>=\dfrac{2}{3}\\x< -1\end{matrix}\right.\)

\(\sqrt{\dfrac{3x-2}{x+1}}=3\)

=>\(\dfrac{3x-2}{x+1}=9\)

=>9(x+1)=3x-2

=>9x+9=3x-2

=>6x=-11

=>\(x=-\dfrac{11}{6}\left(nhận\right)\)

d: ĐKXĐ: \(\left\{{}\begin{matrix}5x-4>=0\\x+2>0\end{matrix}\right.\Leftrightarrow x>=\dfrac{4}{5}\)

\(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\)

=>\(\sqrt{\dfrac{5x-4}{x+2}}=2\)

=>\(\dfrac{5x-4}{x+2}=4\)

=>5x-4=4x+8

=>x=12(nhận)

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

30 tháng 8 2023

câu 9 nhầm đề bài r bạn

 

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 1:

PT \(\Leftrightarrow x^2+3x+8=(x+5)\sqrt{x^2+x+2}\)

\(\Leftrightarrow (x^2+x+2)+2(x+5)-4=(x+5)\sqrt{x^2+x+2}\)

Đặt \(\sqrt{x^2+x+2}=a; x+5=b(a\geq 0)\)

\(PT\Leftrightarrow a^2+2b-4=ba\)

\(\Leftrightarrow (a^2-4)-b(a-2)=0\)

\(\Leftrightarrow (a-2)(a+2-b)=0\Rightarrow \left[\begin{matrix} a=2\\ a+2=b\end{matrix}\right.\)

Nếu \(a=2\Rightarrow x^2+x+2=a^2=4\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow (x-1)(x+2)=0\Rightarrow x=1; x=-2\) (đều thỏa mãn)

Nếu \(a+2=b\Leftrightarrow \sqrt{x^2+x+2}+2=x+5\)

\(\Leftrightarrow \sqrt{x^2+x+2}=x+3\)

\(\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ x^2+x+2=(x+3)^2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+3\geq 0\\ 5x+7=0\end{matrix}\right.\Rightarrow x=\frac{-7}{5}\) (thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Câu 2:

ĐKXĐ: \(x\geq 1\) hoặc \(x\leq \frac{1}{2}\)

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

\(\Leftrightarrow 3(2x^2-3x+1)-8x\sqrt{2x^2-3x+1}+4x^2=0\)

Đặt \(\sqrt{2x^2-3x+1}=a(a\geq 0)\)

Khi đó PT \(\Leftrightarrow 3a^2-8xa+4x^2=0\)

\(\Leftrightarrow (a-2x)(3a-2x)=0\) \(\Rightarrow \left[\begin{matrix} a=2x\\ 3a=2x\end{matrix}\right.\)

Nếu \(a=\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2-3x+1=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 2x^2+3x-1=0\end{matrix}\right.\Rightarrow x=\frac{-3+\sqrt{17}}{4}\) (t/m)

Nếu \(3a=3\sqrt{2x^2-3x+1}=2x\Rightarrow \left\{\begin{matrix} x\geq 0\\ 9(2x^2-3x+1)=4x^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 0\\ 14x^2-27x+9=0\end{matrix}\right.\Rightarrow x=\frac{3}{2}; x=\frac{3}{7}\) (t/m)

Vậy...........

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$