Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
2)
\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)
\(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)
1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)
Ta có: \(x^2+2y^2=9\)
\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)
\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)
\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)
\(\Leftrightarrow123m^2+206m-45=0\)
Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi
Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:
\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)
Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)
Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)
a) √(√3 - 2)² + √3
= 2 - √3 + √3
= 2
b) Để (d) và (d') cắt nhau thì:
m + 2 ≠ -2
m ≠ -2 - 2
m ≠ -4
Vậy m ≠ -4 thì (d) cắt (d')
c) Thay tọa độ điểm A(3; -1) vào (d) ta có:
(2m - 3).3 + m = -1
⇔ 6m - 9 + m = -1
⇔ 7m = -1 + 9
⇔ 7m = 8
⇔ m = 8/7 (nhận)
Thay m = 8/7 vào (d) ta có:
(d): y = -5x/7 - 8/7
Vậy hệ số góc của (d) là -5/7
\(x=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)}\)
\(=\sqrt{2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}=\sqrt{2}\)
2/ Để đồ thị hàm số cắt 2 trục tọa độ tại 2 điểm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\m\ne0\end{matrix}\right.\)
Gọi A là giao điểm của (d) với trục Ox \(\Rightarrow A\left(\frac{2m}{1-m};0\right)\)
\(\Rightarrow OA=\left|\frac{2m}{1-m}\right|=\left|\frac{2m}{m-1}\right|\)
Gọi B là giao điểm của (d) với Oy \(\Rightarrow B\left(0;2m\right)\Rightarrow OB=\left|2m\right|\)
\(S_{OAB}=\frac{1}{2}OA.OB=1\Leftrightarrow OA.OB=2\)
\(\Leftrightarrow\left|\frac{2m}{m-1}\right|.\left|2m\right|=2\Leftrightarrow2m^2=\left|m-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2m^2=m-1\\2m^2=1-m\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m^2-m+1=0\left(vn\right)\\2m^2+m-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-1\\m=\frac{1}{2}\end{matrix}\right.\)
3/
a/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)\left[\left(x+1\right)^2+2\right]\)
\(\Leftrightarrow\left(x+3\right)\sqrt{x+3}+2\sqrt{x+3}=\left(x+1\right)^3+2\left(x+1\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+3}=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3+2a=b^3+2b\)
\(\Leftrightarrow a^3-b^3+2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+2\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+2\right)=0\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x+3}=x+1\) (\(x\ge-1\))
\(\Leftrightarrow x+3=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(l\right)\end{matrix}\right.\)