K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Học hành thế này! Tớ mách cô Hiền nhé!

28 tháng 6 2021

\(1.\)

Theo đề ra, ta có:

\(ax+by=c\)

\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)

\(cx+by=b\)

\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)

\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)

Khi đó ta có:

\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)

27 tháng 12 2020

Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).

Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).

3 tháng 6 2016

Ta có : \(x=a^2-bc\Rightarrow ax=a^3-abc\)\(y=b^2-ac\Rightarrow by=b^3-abc\)\(z=c^2-ab\Rightarrow cz=c^3-abc\)

\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)

Vậy : \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\)(đpcm)

Bạn lưu ý đề bài ở chỗ \(y^2=b^2-ac\)bạn ghi sai nhé, phải là \(y=b^2-ac\)

Bạn nhớ ghi thêm điều kiện x,y,z khác 0 nữa nhé :))

31 tháng 7 2017

đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc

31 tháng 7 2017

giai ho minh di