Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình nghĩ là như th61 này
\(2\cdot2^{99}-2^{99}=2^{99}\)
\(2^{99}=2\cdot2^{98}\)
\(2\cdot2^{98}-2^{98}=2^{98}\)
vậy tức là \(2^n-2^{n-1}=2^{n-1}\)
đến cuối bạn sẽ có \(2^3-2^2=4\)
4-2-1=1
Đặt :
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...............+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(A=\dfrac{49}{100}\)
~ Chúc bn học tốt ~
C=(1x3+3x5+...+99x101)+(2x4+4x6+...+98x100)
đặt S=1x3+3x5+...+99x101
=>6S=6x(1x3+3x5+...+99x101)
=1x3x(5+1)+3x5x(7-1)+...+97x99x(101-95)+99x101x(103-97)
=1x3x5+1x3x1+3x5x7-1x3x5+....+97x99x101-95x97x99+99x101x103-97x99x101
=1x3x1+99x101x103
=>S=(3+99x101x103):6=171650
=>C=171650+(2x4+4x6+...+98x100)
đặt A=2x4+4x6+...+98x100
=>6A=6x(2x4+4x6+...+98x100)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100
=98x100x102
=>A=98x100x102:6=166600
=>C=166600+171650
=>C=338250
B=2x2+4x4+6x6+...+100x100
=2x(4-2)+4x(6-2)+6x(8-2)+...+100x(102-2)
=2x4-4+4x6-8+6x8-12+...+100x102-200
=(2x4+4x6+6x8+...+100x102)-(4+8+12+...+200)
đặt A=2x4+4x6+...+98x100+100x102
=>6A=6x(2x4+4x6+...+98x100+100x102)
=>6A=2x4x6+4x6x(8-2)+...+96x98x(100-94)+98x100x(102-96)+100x102x(104-98)
=2x4x6+4x6x8-2x4x6+...+96x98x100-94x96x98+98x100x102-96x98x100+100x102x104-98x100x102
=100x102x104
=>A=100x102x104:6=176800
=>B=176800-(4+8+12+...+200)
đặt S=4+8+12+..+200
Số số hạng của S là:
(200-4):4+1=50 số
S=(200+4)x50:2=5100
=>B=176800-5100
=>B=171700
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(=57\left(1+...+7^{118}\right)⋮57\)
3x . 2 + 15 = 33
3x . 2 = 33 - 15 = 18
3x = 18 : 2 = 9 = 32
=> x = 2
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)
Ta có: \(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}\)
\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-0-0-0-...-0-\dfrac{1}{100}\)
\(A=\dfrac{1}{2}-\dfrac{1}{100}\)
\(A=\dfrac{50}{100}-\dfrac{1}{100}\)
\(A=\dfrac{49}{100}\)