K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 10 2017

Bài 1:

Ta có: \(9(x-1)^2-4(2x+3)^2=(3x-3)^2-(4x+6)^2\)

\(=(3x-3-4x-6)(3x-3+4x+6)=-(x+9)(7x+3)\)

Bài 2:

Có: \(x^2-x+\frac{9}{20}=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{1}{5}=\left(x-\frac{1}{2}\right)^2+\frac{1}{5}\)

Ta thấy \(\left(x-\frac{1}{2}\right)^2\geq 0\forall x\in\mathbb{R}\Rightarrow x^2-x+\frac{9}{20}\geq \frac{1}{5}>0\forall x\in\mathbb{R}\)

Ta có đpcm.

Bài 3:

Thực hiện phân tích:

\(f(x)=x^3-8x^2+ax-5=x(x^2-3x+1)-5(x^2-3x+1)+ax-16x\)

\(=(x-5)(x^2-3x+1)+ax-16x\)

Thấy rằng bậc của \(ax-16x\) nhỏ hơn bậc của $g(x)$ nên $ax-16x$ là dư của $f(x)$ cho $g(x)$

Để \(f(x)\vdots g(x)\Rightarrow ax-16x=0\forall x\Rightarrow a=16\)

Bài 4:

Để \(\overline{2017x}\vdots 12\Leftrightarrow \left\{\begin{matrix} \overline{2017x}\vdots 3(1)\\ \overline{2017x}\vdots 4(2)\end{matrix}\right.\)

\((1)\Leftrightarrow 2+0+1+7+x\vdots 3\Leftrightarrow 10+x\vdots 3\Leftrightarrow x+1\vdots 3\)

\((2)\Leftrightarrow \overline{7x}\vdots 4\Rightarrow x\in\left\{2;6\right\}\)

Từ hai điều trên suy ra \(x=2\)

AH
Akai Haruma
Giáo viên
24 tháng 10 2017

Bài 5:

Ta có: \(x+\frac{1}{x}=\sqrt{2017}\Rightarrow \left(x+\frac{1}{x}\right)^2=2017\Leftrightarrow x^2+\frac{1}{x^2}+2=2017\)

\(\Leftrightarrow x^2+\frac{1}{x^2}=2015\)

Như vậy: \(A=3x^2-5+\frac{3}{x^2}=3\left(x^2+\frac{1}{x^2}\right)-5=3.2015-5=6040\)

Bài 6:

Đặt \(\left\{\begin{matrix} x+y+z=a\\ xy+yz+xz=b\end{matrix}\right.\). ĐKĐB tương đương với:

\(\left\{\begin{matrix} a^2-2b=3\\ a+b=6\rightarrow b=6-a\end{matrix}\right.\)

\(\Rightarrow a^2-2(6-a)=3\Leftrightarrow a^2-2a+15=0\Leftrightarrow (a+5)(a-3)=0\Leftrightarrow a=3\)

(do \(a\in\mathbb{R}^+\))

Kéo theo \(b=6-a=3\Rightarrow x^2+y^2+z^2=xy+yz+xz\)

Theo BĐT AM-GM thì \(x^2+y^2+z^2\geq xy+yz+xz\)

Dấu bằng xảy ra khi \(x=y=z\Rightarrow x=y=z=1\) do \(x+y+z=3\)

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Bài 4: 

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

=>3x=42

hay x=14

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>-2x+8=0

=>-2x=-8

hay x=4

c: \(x\left(x-2\right)+\left(x-2\right)=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

d: \(5x\left(x-3\right)-x+3=0\)

=>5x(x-3)-(x-3)=0

=>(x-3)(5x-1)=0

=>x=3 hoặc x=1/5

e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)

\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)

=>-14x=28

hay x=-2

f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)

=>x+2=0

hay x=-2

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn