Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: 1/2.3 < 1/2^2 < 1/1.2
1/3.4 < 1/3^2 <1/2.3
........
........
1/10.11 < 1/10^2 <1/9.10
Suy ra 1/2.3 +1/3.4 + ....+1/10.11 <1/2^2+ 1/3^2+ ....+1/10^2 <1/1.2+1/2.3+...+1/9.10
=>1/2 - 1/3 +1/3 -1/4+...+1/10 -1/11<S<1-1/2+1/2-1/3+....+1/9-1/10
=>1/2-1/11<S<1-1/10
=>9/22<S<9/10
=>S<1
=>[S]=0
Vây [S]=0
nhớ k cho mình nhé
Ta thấy \(87=1.87=3.29\) nên ta xét 2TH
TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)
Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.
TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)
Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)
TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)
Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.
TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:
TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.
TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)
Vậy, số cần tìm là 11999.
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Ta có:
\(\frac{1}{2^2}< \frac{1}{1\times2}\)
\(\frac{1}{3^2}< \frac{1}{2\times3}\)
\(\frac{1}{4^2}< \frac{1}{3\times4}\)
\(...\)
\(\frac{1}{10^2}< \frac{1}{9\times10}\)
\(\rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)
\(\Rightarrow S< \frac{9}{10}\)mà \(S>0\Rightarrow\left[S\right]=0\)