K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

\(\left(3x-2\right)\left(4x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)

24 tháng 4 2019

ĐKXĐ: x khác -4;-5;-6;-7

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow3.18=x^2+11x+28\)

\(\Rightarrow x^2+11x-26=0\)

\(\Rightarrow\left(x-2\right).\left(x+13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}\left(tm\right)}\)

Vậy...

NV
10 tháng 3 2019

a/ Đặt \(6x+7=a\Rightarrow\left\{{}\begin{matrix}6x+8=a+1\\6x+6=a-1\end{matrix}\right.\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)a^2-72=0\)

\(\Leftrightarrow\left(a^2-1\right)a^2-72=0\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)

\(\Leftrightarrow a^2=9\) (do \(a^2+8>0\))

\(\Rightarrow\left[{}\begin{matrix}a=3\\a=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne-4;-5;-6;-7\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow x^2+11x-26=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)

26 tháng 2 2022

hic, mk chx học

13 tháng 3 2019

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

13 tháng 3 2019

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

27 tháng 4 2019

ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)

Có:

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)

Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)

  vào phương trình, ta có:  \(\left(x-4\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8

Vậy phương trình có nghiệm x=8