K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2022

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

22 tháng 12 2022

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

15 tháng 3 2020

mình làm cho câu dưới nha

\(x+y+xy+2=x^2+y^2\)

\(=>x^2+y^2-x-y-xy=2\)

=>\(2x^2+2y^2-2x-2y-2xy=4\\\)( chỗ này nhân mõi zế zs 2 á)

=>\(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=4\)

ta lại có\(4=0+1+3=tgtựra\)

mình nghĩ thế

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn

NV
7 tháng 10 2021

\(x+y+xy+1=0\)

\(\Leftrightarrow x\left(y+1\right)+y+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\)

Thế xuống pt dưới...

26 tháng 12 2017

chiu ban oi

2 tháng 2 2021

\(\left\{{}\begin{matrix}\left(x-15\right)\left(y+2\right)=xy\\\left(x+15\right)\left(y-1\right)=xy\end{matrix}\right.\)

\(\left\{{}\begin{matrix}xy+2x-15y-30-xy=0\\xy-x+15y-15-xy=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-15y=30\\-x+15y=15\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-15=30\\3x=45\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=45\\y=4\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (45;4)

2 tháng 2 2021

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=5\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\) (ĐK: x,y >0)

\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{2}{x}+\dfrac{5}{y}=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{5}{x}+\dfrac{5}{y}=25\\\dfrac{3}{x}=18\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=\dfrac{6}{29}\end{matrix}\right.\) (TM)

Vậy HPT có nghiệm (x;y) = (\(\dfrac{1}{6};\dfrac{6}{29}\))

 

17 tháng 6 2021

Ai giúp mình với đi ạ
Mình cảm ơn nhiều.

17 tháng 6 2021

a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))

Đặt \(\dfrac{x}{x+1}\)  là A

\(\dfrac{y}{y+1}\) là B 

Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)

Giải HPT (1) ta được A=  \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)

+Với A=\(\dfrac{7}{5}\) ta có: 

\(\dfrac{x}{x+1}=\dfrac{7}{5}\)

<=>\(5x=7x+7\)

<=>-2x=7

<=> x=\(-\dfrac{7}{2}\)

+Với B = \(-\dfrac{4}{5}\) ta có:

\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)

<=>5y=-4y-4

<=>9y=-4

<=>y=\(-\dfrac{4}{9}\)

Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)

 

2 tháng 12 2015

câu 2 có lẽ dễ nhất luôn :

tách x^2+(1+y)^2=1 thành x^2+1+2y+y^2=1   (1)

tách y^2+(1+x)^2=1 thành y^2+1+2x+x^2=1    (2)

lấy(1) trừ( 2)

==>>>> x=y 

tự làm tiếp nhé