\(\left\{{}\begin{matrix}2x^2-y^2-xy-x-y=0\\\sqrt{2x+y-2}+2-2x=0\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

bai 2 quen quen

30 tháng 4 2017

à bài này làm r` ở bên đây nè :D có cả 2 cách

Câu hỏi của Phúc Long Nguyễn - Toán lớp 9 - Học toán với OnlineMath

13 tháng 3 2017

bài 1:

b) đề như vầy hả :\(\left\{{}\begin{matrix}\left(x^2-1\right)y+\left(y^2-1\right)x=2\left(xy-1\right)\left(1\right)\\4x^2+y^2+2x-y-6=0\left(2\right)\end{matrix}\right.\)

\(Pt\left(1\right)\Leftrightarrow x^2y+xy^2-x-y-2xy+2=0\)

\(\Leftrightarrow xy\left(x+y\right)-\left(x+y\right)-2\left(xy-1\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy-1\right)-2\left(xy-1\right)=0\)

\(\Leftrightarrow\left(xy-1\right)\left(x+y-2\right)=0\Leftrightarrow\left[{}\begin{matrix}xy=1\\x+y=2\end{matrix}\right.\)

*xét \(xy=1\Leftrightarrow x=\dfrac{1}{y}\)thế vào Pt (2):\(\dfrac{4}{y^2}+y^2+\dfrac{2}{y}-y-6=0\)

\(\Leftrightarrow\dfrac{4+2y}{y^2}+\left(y+2\right)\left(y-3\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(\dfrac{2}{y^2}+y-3\right)=0\)

\(\Leftrightarrow\left(y+2\right)\left(y^3-3y^2+2\right)=0\)\(\Leftrightarrow\left(y+2\right)\left(y-1\right)\left(y^2-2y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\\y=1\\y=1-\sqrt{3}\\y=1+\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\\x=-\dfrac{1+\sqrt{3}}{2}\\x=\dfrac{-1+\sqrt{3}}{2}\end{matrix}\right.\)

* xét x+y=2(tương tự thay x=2-y vào Pt (2))

câu 2:

ta đưa về PT ẩn x:\(x^2-x\left(y+1\right)+y^2-y-2=0\)

Pt phải có nghiệm ,xét \(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)

\(\Leftrightarrow y^2-2y-3\le0\Leftrightarrow\left(y+1\right)\left(y-3\right)\le0\)

\(\Leftrightarrow-1\le y\le3\).

vì x,y thuộc Z ,lần luợt thay các giá trị của y vừa tìm được vào PT ban đầu ta được các cặp (x,y) t/m là (0;-1);(-1;0);(2;0);(0;2);(3;2);(2;3)

bài 3:

DKXĐ:\(\left\{{}\begin{matrix}2x^2-x\ge0\\2x-x^2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le0\end{matrix}\right.\\0\le x\le2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{2}\le x\le2\end{matrix}\right.\)

bình phương , self study

13 tháng 3 2017

chắc z đó

26 tháng 3 2017

Bài 5: Đặt \(t=\dfrac{\left(x+y+1\right)^2}{xy+x+y}\)

Ta đã biết bđt quen thuộc là \(x^2+y^2+1\ge xy+x+y\)

Vậy nên ta sẽ chứng minh \(t\geq 3\)

Thật vậy: \(t\geq 3\Leftrightarrow 2(x+y+1)^2\geq 6(x+y+xy)\)

\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2\geq 0\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Ta có: \(A=\dfrac{8t}{9}+\left(\dfrac{t}{9}+\dfrac{1}{t}\right)\geq \dfrac{24}{9}+\dfrac{2}{3}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(t=3\Leftrightarrow x=y=1\)

25 tháng 3 2017

3)

x^2 = 2x + \(\sqrt{2x-1}\) \(\Rightarrow\) x^2 = ( 2x -1 ) + \(\sqrt{2x-1}\) +1

\(\Rightarrow\) x^2 = (\(\sqrt{2x-1}\) + 1)^2 chuyển vế rồi phân tích thành nhân tử là ok

5 tháng 6 2017

1 + y2 = xy + yz + xz + y2 = (x + y)(y + z)

1 + z2 = xy + yz + xz + z2 = (x + z)(z + y)

1 + x2 = xy + yz + xz + x2 = (y + x)(x + z)

Sau khi thay vào và rút gọn ta được

S = x(y + z) + y(x + z) + z(x + y)

S = 2(xy + yz + xz) = 2.1 = 2

5 tháng 6 2017

Ace Legona

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0
8 tháng 8 2017

\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)

Lấy (2) cộng (3) ta được

\(x^2+y^2-yz-zx=2\) (4)

Lấy (1) - (4) ta được

\(2x\left(x+z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)

Xét 2 TH rồi thay vào tìm được y và z

8 tháng 8 2017

1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

16 tháng 4 2017

Cách giải khác:

Ta chứng minh bổ đề:

\(\dfrac{11x+4y}{4x^2-xy+2y^2}\le\dfrac{2}{x}+\dfrac{1}{y}\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(Đúng)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{11y+4z}{4y^2-yz+2z^2}\le\dfrac{2}{y}+\dfrac{1}{z};\dfrac{11z+4x}{4z^2-xz+2x^2}\le\dfrac{2}{z}+\dfrac{1}{x}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}=\dfrac{3\left(xy+yz+xz\right)}{xyz}=9\)

Đẳng thức xảy ra khi \(x=y=z=1\)

16 tháng 4 2017

Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến đổi biến (a,b,c)->(x,y,z) là y nhau