Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(ad+bc\right)^2=4abcd\Leftrightarrow a^2d^2+b^2c^2+2abcd-4abcd=0\)\(\Leftrightarrow a^2d^2-2abcd+b^2d^2=0\)
\(\Leftrightarrow\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(với b và d khác 0)
Ta luôn dùng dấu tương đương nên không cần chứng minh ngược lại.
Ta có:
\(\left[ab\left(ab-2cd\right)+c^2d^2\right].\left[ab\left(ab-2\right)+2\left(ab+1\right)\right]=0\)
\(\Leftrightarrow\left(a^2b^2-2acbd+c^2d^2\right).\left(a^2b^2-2ab+2ab+2\right)=0\)
\(\Leftrightarrow\left(ab-cd\right)^2.\left(a^2b^2+2\right)=0\)
Vì \(a^2b^2+2>0\forall a;b\)
\(\Leftrightarrow\left(ab-cd\right)^2=0\)
\(\Leftrightarrow ab-cd=0\)
\(\Leftrightarrow ab=cd\left(đpcm\right)\)
(ad+bc)^2 = 4abcd
<=> a^2d^2+2abcd+b^2c^2 = 4abcd
<=> a^2d^2+2abcd+b^2c^2-4abcd=0
<=> a^2d^2-2abcd+b^2c^2 = 0
<=> (ad-bc)^2 = 0
<=> ad-bc = 0
<=> ad=bc
<=> a/b=c/d
=> ĐPCM
k mk nha
(ad+bc)2=4abcd
<=>(ad+bc)(ad+bc)-4abcd=0
<=>ad(ad+bc)+bc(ad+bc)-4abcd=0
<=>(ad2)+abcd+abcd+(bc)2-4abcd=0
<=>(ad)2+(bc)2+2abcd-(2abcd+2abcd)=0
<=>(ad)2+(bc)2+2abcd-2abcd-2abcd=0
<=>(ad)2+(bc)2-2abcd=0
<=>(ad-bc)2=0
<=>ad=bc
<=>a/b=c/d
vậy từ đẳng thức trên ta có a,b,c,d lập thành 1 TLT(đpcm)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
Ta có VT:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)
\(=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\) (1)
VT: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ab=cd\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)
Vậy...
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a) \(\dfrac{3a+5c}{3b+5d}=\dfrac{3\cdot bk+5\cdot dk}{3b+5d}=\dfrac{k\left(3b+5d\right)}{3b+5d}=k\) (1)
\(\dfrac{a-2c}{b-2d}=\dfrac{bk-2dk}{b-2d}=\dfrac{k\left(b-2d\right)}{b-2d}=k\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{3a+5c}{3b+5d}=\dfrac{a-2c}{b-2d}\left(dpcm\right)\)
b) \(\dfrac{a^2-b^2}{ab}=\dfrac{\left(bk\right)^2-b^2}{bk\cdot b}=\dfrac{b^2k^2-b^2}{b^2k}=\dfrac{b^2\left(k-1\right)}{b^2k}=\dfrac{k-1}{k}\)(1)
\(\dfrac{c^2-d^2}{cd}=\dfrac{\left(dk\right)^2-d^2}{dk\cdot d}=\dfrac{d^2k^2-d^2}{d^2k}=\dfrac{d^2\left(k-1\right)}{d^2k}=\dfrac{k-1}{k}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\left(dpcm\right)\)
c) \(\left(\dfrac{a+b}{c+d}\right)^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\dfrac{b^3\left(k+1\right)^3}{d^3\left(k+1\right)^3}=\dfrac{b^3}{d^3}\) (1)
\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\) (2)
Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3+b^3}{c^3+d^3}\left(dpcm\right)\)
Bài 1:
\(\dfrac{a}{b}=\dfrac{c}{d}\\ \Leftrightarrow ad=bc\\ \Leftrightarrow ad+bc=2bc\\ \Leftrightarrow\left(ad+bc\right)^2=4b^2c^2\\ \Leftrightarrow\left(ad+bc\right)^2=4abcd\left(đpcm\right)\)
Bài 2:
\(\left(ad+bc\right)^2=4abcd\\ \Leftrightarrow a^2d^2+b^2c^2+2abcd=4abcd\\ \Leftrightarrow a^2d^2-2abcd+b^2c^2=0\\ \Leftrightarrow\left(ad-bc\right)^2=0\\ \Leftrightarrow ad-bc=0\\ \Leftrightarrow ad=bc\\ \Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(dpcm\right)\)