Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
D=(7+7^2)+(7^3+7^4)+...+(7^2009+7^2010)
D=7.(1+7)+7^3.(1+7)+...+7^2009.(1+7)
D=8.(7+7^3+...+7^2009)
=> D chia hết cho 8
D=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^2008+7^2009+7^2010)
D=7.(1+7+49)+7^4.(1+7+49)+...+7^2008.(1+7+49)
D=57.(7+7^4+...+7^2008)
=> D chia hết cho 57
chúc bạn học tốt nha
nhớ ủng hộ mk với nha
a) A=2^1+2^2+2^3+...+2^2010
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A=2.(1+2)+2^3 . (1+2)+...+2^2009.(1+2)
A=3.(2+2^3+2^5+...+2^2009)
=> A chia hết cho 3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2008+2^2009+2010)
A=2.(1+2+4)+2^4.(1+2+4)+...+2^2008.(1+2+4)
A=7.(2+2^4+...+2^2008)
=> A chia hết cho 7
bạn ghi câu hỏi tách nhau ra thành 4 câu khác nhau đi mk trả lời cho ko thì dài lắm
bn ko lm thì thôi đừng như thế chứ
mình làm ý nào cũng được nha