Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=(5a-3b+8c).(5a-3b-8c)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
Mà \(a^2-b^2=4c^2\) nên:
\(VT=25^2-30ab+9b^2-16.\left(a^2-b^2\right)\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2=VP\)
\(\Rightarrow\) Đpcm.
Ta có : \(\left(5a-3b+8c\right)\left(5a-3b-8c\right)\)
\(=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=\left(5a-3b\right)^2-64c^2\)
\(=\left(5a-3b\right)^2-16.4c^2\)
\(=\left(5a-3b\right)^2-16\left(a^2-b^2\right)\)
\(=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2\)
\(=\left(3a-5b\right)^2\left(đpcm\right)\)
VT= (5a-3b)^2 - 64c^2=25a^2-30ab + 9b^2 -16a^2+16b^2=9a^2-30ab+25b^2= (3a-5b)^2 = VP (đpcm)
Xét VT ta có :
VT = ( 5a - 3b + 8c )( 5a - 3b - 8c )
= ( 5a - 3b )2 - ( 8c )2
= 25a2 - 30ab + 9b2 - 64c2
= 25a2 - 30ab + 9b2 - 16.4c2
= 25a2 - 30ab + 9b2 - 16( a2 - b2 )
= 25a2 - 30ab + 9b2 - 16a2 + 16b2
= 9a2 - 30ab + 25b2
= ( 3a - 5b )2 = VP
=> đpcm
biến đổi vế trái
\(\Leftrightarrow\left(5a-3b\right)^2-\left(8c\right)^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-64c^2\)
\(\Leftrightarrow25a^2-30ab+9b^2-16\left(a^2-b^2\right)\)
\(\Leftrightarrow\left(25a^2-16a^2\right)-30ab+\left(9b^2+16b^2\right)\)
\(\Leftrightarrow9a^2-30ab+25b^2\)
\(\Leftrightarrow\left(3a-5b\right)^2\) (điều cần c/m)
Sửa đề của bạn : a2 - b2 = 4c2
(5a - 3b + 8c). (5a - 3b - 8c) = (5a - 3b)2 - (8c)2 = 25a2 - 30ab + 9b2 - 16. (a2 - b2) = 9a2 - 30ab + 25b2 = (3a - 5b)2
1/ Chứng minh các hằng đẳng thức:
\(x^4 + y^4 +(x+y)^4 = x^4 + y^4 + x^4 + 4x^3y + 6x^2y^2 +4xy^3 + y^4 \\\ = 2x^4 +2y^4 +4x^2y^2+4x^3y+4xy^3+2x^2y^2\)
\(= 2(x^4 +y^4 +2x^2y^2)+4xy(x^2+y^2) + 2x^2y^2 \\\ = 2(x^2 + y^2)2 + 4xy(x^2 + y^2) +2x^2y^2\)
\(=2(x^2 +y^2) +2xy(x^2+ y^2) +x^2y^2) = 2(x^2 + y^2 + xy)^2 \\\ ⇒ đpcm\)
2/
Ta có : \([(5a - 3b) + 8c][(5a - 3b) - 8c] \)
\(= (5a - 3b)^2 - 64c^2\) (theo hiệu hai bình phương)
\(= 25a^2 - 30ab + 9b^2 - 64c^2\) (theo bình phương của hiệu)
\(= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2)\) (vì \(4c^2 = a^2 - b^2\))
\(= 9a^2 - 30ab + 25b^2 \)
\(= (3a - 5b)^2\) (theo bình phương của hiệu).