K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 2 2020

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
29 tháng 2 2020

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1

2 tháng 5 2019

Các bạn ơi giúp mk với

13 tháng 2 2020

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

17 tháng 12 2016

1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)

Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:

\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)

\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)

\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)

Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)

Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm

 

 

17 tháng 12 2016

3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)

\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

Dấu '=' xảy ra ↔ a = b

Áp dụng BĐT trên, ta có:

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng vế theo vế ba BĐT trên ta được:

\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)

Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)

Vậy GTLN của P là 3/4 khi x = y = z = 1/3

19 tháng 8 2019

2.

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)

Tương tự ta cũng có :

\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)

\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)

Cộng theo vế của các bất đẳng thức ta được :

\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)

Mặt khác áp dụng bất đẳng thức Cauchy ta có :

\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)

\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)

\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)

\(=82\) (2)

Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)

\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

19 tháng 8 2019

1.

Áp dụng bất đẳng thức Cauchy :

\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)

\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)

\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)

\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)

\(\ge3\cdot2\sqrt{9}-8=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

NV
12 tháng 10 2019

\(P=\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\)

Ta có đánh giá: \(\frac{x}{1-x^2}\ge\frac{3\sqrt{3}}{2}x^2\) \(\forall x\in\left(0;1\right)\)

Thật vậy, BĐT tương đương:

\(2x\ge3\sqrt{3}x^2-3\sqrt{3}x^4\)

\(\Leftrightarrow\left(\sqrt{3}x-1\right)^2\left(\sqrt{3}x+2\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{y}{1-y^2}\ge\frac{3\sqrt{3}}{2}y^2\) ; \(\frac{z}{1-z^2}\ge\frac{3\sqrt{3}}{2}z^2\)

Cộng vế với vế: \(P\ge\frac{3\sqrt{3}}{2}\left(x^2+y^2+z^2\right)=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

20 tháng 10 2019

Quy đồng căng thẳng tek:)))

22 tháng 7 2018

\(A=\sum\dfrac{x}{\sqrt{x^2+1}+x}=\sum\dfrac{x}{\sqrt{x^2+xy+yz+xz}+x}=\sum\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\le\sum\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}=\sum\dfrac{\sqrt{x}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}=1\)

22 tháng 7 2018

tại sao: \(\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}+x}\)\(\dfrac{x}{\sqrt{xy}+\sqrt{xz}+x}\)