\(\in\)Q . Chứng minh rằng :

a) I x + y I \(\le\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

1, Ta có \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\left(1\right)< =>\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)

\(< =>\left|x\right|^2+\left|y\right|^2+2\left|x\right|\left|y\right|\ge x^2+2xy+y^2\)

\(< =>2\left|x\right|\left|y\right|\ge2xy< =>\left|xy\right|\ge xy\) (dấu "=" xảy ra <=> \(xy\ge0\) )

bđt trên luôn đúng nên (1) đúng ,đpcm

ý sau tương tự

2) \(A=\left|x-2001\right|+\left|x-1\right|\ge\left|x-2001+1-x\right|=2000\)

dấu "=" xảy ra \(< =>\left(x-2001\right)\left(1-x\right)\ge0< =>1\le x\le2001\)

vậy minA=2000 khi ............

20 tháng 11 2016

2. GTNN của A = 2000

17 tháng 11 2015

BẠN ĐỮNG CÓ NÓI DỐI  NHA MÌNH TICK CHO BẠN BẠN CÓ LÀM ĐÂU.THÔI BẠN VỀ CHUỒNG NẰM GẶM XƯƠNG ĐI CHO KHỎI NHỨC ĐẦU THIÊN HẠ (NHỚ ĐỪNG SỦA NỮA NHA CÚN CON)

27 tháng 9 2019

Ta có:

+) Với \(\left|x\right|>\left|y\right|\)

\(\Rightarrow\left|x-y\right|=\left|x\right|-\left|y\right|\) (1)

+) Với \(\left|x\right|< \left|y\right|\)

\(\Rightarrow\left|x\right|-\left|y\right|< 0.\)

\(\left|x-y\right|\ge0\)

\(\Rightarrow\left|x-y\right|>\left|x\right|-\left|y\right|\) (2)

Từ (1) và (2) => \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\forall xy\in Q\left(đpcm\right).\)

Dấu bằng xảy ra khi \(x=y.\)

Chúc bạn học tốt!

20 tháng 9 2015

\(\left|x-y\right|+\left|y+\frac{5}{17}\right|=0\)

\(\Leftrightarrow\left|x-y\right|=\left|y+\frac{5}{17}\right|=0\)

\(\Leftrightarrow x=y=-\frac{5}{17}\)

19 tháng 11 2015

a) |x + 1| > 0

|x + 1| + 5 > 5

\(\Rightarrow\) min A = 5 khi x = - 1

b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)

x2 > 0

x2 + 3 > 3

\(\frac{1}{x^2+3}\le\frac{1}{3}\)

\(\frac{12}{x^2+3}\le4\)

\(1+\frac{12}{x^2+3}\le5\)

\(\Rightarrow\) max B = 5 khi x = 0

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\) Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\) Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng...
Đọc tiếp

Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)

Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)

Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất

Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng minh rằng:

\(\frac{hc-hb}{ha}+\frac{hb-ha}{hc}+\frac{ha-hc}{hb}\ge0\)

Bài 4: Cho \(\frac{a}{b}>\frac{x}{y}>\frac{c}{d}\)với x,y,a,b,c,d \(\in Z^+\). Nếu ad-bc=1. C/m \(x\ge a+c\) \(y\ge b+d\)

Bài 5, Tìm giá trị x,y,z để biểu thức

\(A=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|+2016\)đạt giá trị nhỏ nhất

Bài 6, Tìm x,y,z biết \(\dfrac{x}{y+z-5}=\dfrac{y}{x+z+3}=\dfrac{z}{x+y+2}=\dfrac{1}{2}\)(x+y+z)

Bài 7 Cho biết \(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

C/m \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}c^{42}\)

0