K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow\frac{b}{a}+1=\frac{d}{c}+1\Leftrightarrow\frac{a+b}{a}=\frac{c+d}{c}\) (1)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{b}{a}=\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)

\(\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\) (2)

Nhân vế (1) và (2) lại ta được:

\(\frac{a+b}{a}\cdot\frac{a}{a-b}=\frac{c+d}{c}\cdot\frac{c}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

22 tháng 9 2019

a)

i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!


22 tháng 9 2019

còn ii và phần b nữa

AH
Akai Haruma
Giáo viên
16 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

29 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a) Ta có: 

\(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\) (1)

\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a+b}=\frac{c}{c+d}\)

b) Ta có:

\(\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\) (1)

\(\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{a-b}=\frac{c}{c-d}\)

c) Ta có:

\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

22 tháng 9 2019

a) 

i) theo đề ta có ad=bc

ta có a(c+d) = ac+ad

ta có (a+b)c = ac+bc

mà ad = bc

\(\frac{a}{a+b}=\frac{c}{c+d}\)

22 tháng 9 2019

các bạn ơi mình không hiểu sao câu ii mình ra thế này

 ii) đặt \(\frac{a}{b}=\frac{c}{d}=m\)\(\Rightarrow\)a=mb ; c=dm

Ta có \(\frac{a-b}{c-d}\)\(\frac{mb-b}{md-d}\)=\(\frac{b\left(m-1\right)}{d\left(m-1\right)}\)=\(\frac{b}{d}\)

Ta có \(\frac{a+c}{b+d}\)=\(\frac{mb+md}{b+d}\)=m

27 tháng 9 2017

b) Ta có (a+b+c+d)(a-b-c-d)=(a-b+c-d)(a+b-c-d) với dạng a.d = b.c

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+b+c+d}{a+b-c-d}=\frac{a-b-c-d}{a-b+c-d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right)\)

Từ (1) và (2) => \(\frac{\left(a+b+c+d\right)=\left(a-b-c-d\right)}{\left(a+b-c-d\right)=\left(a-b+c-d\right)}\Rightarrow\frac{a+b+c+d}{a+b-c-d}=\frac{a-b-c-d}{a-b+c-d}\)(đpcm)

10 tháng 8 2017

\(a.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Rightarrow\)\(\frac{a+b}{b}=\frac{c+d}{d}\left(đpcm\right)\)

\(b.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}-1=\frac{c}{d}-1_{ }\)

\(\Rightarrow\)\(\frac{a-b}{b}=\frac{c-d}{d}\)\(\left(đpcm\right)\)

\(c.\)\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{b}{a}=\frac{d}{c}\)

\(\Rightarrow\)\(\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\)\(\frac{b+a}{a}=\frac{d+c}{c}\)hay \(\frac{a+b}{a}=\frac{c+d}{d}\left(đpcm\right)\)

\(d.\)Tương tự \(c\) nhé bn. Chúc bn học tốt!