Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có EM là đường trung bình của tam giác BCD Þ ĐPCM.
b) DC đi qua trung điểm D của AE và song song với EM Þ DC đi qua trung điểm I của AM.
c) Vì DI là đường trung bình của tam giác AEM nên DI = (1/2) EM.(1)
Tương tự, ta được: EM = (1/2)DC (2)
Từ (1) và (2) Þ DC = 4DI
Vì \(AM\) là đường trung tuyến ứng với \(BC\left(gt\right)\)
=> \(MA=MB.\)
a) Nối \(E\) với \(M.\)
Xét \(\Delta BDC\) có:
\(\left\{{}\begin{matrix}DE=EB\left(gt\right)\\MA=MB\left(cmt\right)\end{matrix}\right.\)
=> \(ME\) là đường trung bình của \(\Delta BDC.\)
=> \(ME\) // \(CD\) (tính chất đường trung bình của tam giác)
Mà \(I\in CD\left(gt\right)\)
=> \(ME\) // \(ID.\)
Xét \(\Delta AEM\) có:
\(AD=AE\left(gt\right)\)
\(ME\) // \(ID\left(cmt\right)\)
=> \(I\) là trung điểm của \(AM\) (định lí đường trung bình của tam giác)
Chúc bạn học tốt!
Xét ΔBDC có
E là trung điểm của BD(gt)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
Suy ra: EM//DC và \(EM=\dfrac{DC}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay DI//EM
Xét ΔAEM có
D là trung điểm của AE(gt)
DI//EM(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
Suy ra: AI=IM
Xét ΔAEM có
D là trung điểm của AD(gt)
I là trung điểm của AM(cmt)
Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)
Suy ra: \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)
\(\Leftrightarrow EM=2\cdot DI\)
\(\Leftrightarrow DC\cdot\dfrac{1}{2}=2\cdot DI\)
hay DC=4DI(Đpcm)
Xét ΔBDC có
E là trung điểm của BD(gt)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
Suy ra: EM//DC và EM=DC2EM=DC2(Định lí 2 về đường trung bình của tam giác)
hay DI//EM
Xét ΔAEM có
D là trung điểm của AE(gt)
DI//EM(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
Suy ra: AI=IM
Xét ΔAEM có
D là trung điểm của AD(gt)
I là trung điểm của AM(cmt)
Do đó: DI là đường trung bình của ΔAEM(Định nghĩa đường trung bình của tam giác)
Suy ra: DI=EM2DI=EM2(Định lí 2 về đường trung bình của tam giác)
⇔EM=2⋅DI⇔EM=2⋅DI
⇔DC⋅12=2⋅DI⇔DC⋅12=2⋅DI
hay DC=4DI(Đpcm)
xét tam giác BDC ta có
E là trung điểm DB ( vì EB = ED)
M là trung điểm của BC (GT)
=> ME là đường trung bình của tam giác BDC
=> ME //DC ; ME = 1/2DC
b) xét tam giác AEM ta có
D là trung điểm AE ( vì AD = DE)
DC // EM ( câu a)
=> DC đi qua trung điểm AM
=> I là trung điểm AM
a) Xét ΔBCD có
M là trung điểm của BC
E là trung điểm của BD
Do đó: ME là đường trung bình của ΔBCD(Định nghĩa đường trung bình của tam giác)
Suy ra: ME//CD và \(ME=\dfrac{CD}{2}\)(Định lí 2 về đường trung bình của tam giác)
b) Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
c) Xét ΔAEM có
D là trung điểm của AE
I là trung điểm của AM
Do đó: DI là đường trung bình của ΔAEM
Suy ra: DI//EM và \(DI=\dfrac{EM}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: \(DI=\dfrac{EM}{2}\)(cmt)
nên \(EM=2\cdot DI\)
\(\Leftrightarrow\dfrac{DC}{2}=2\cdot DI\)
\(\Leftrightarrow DC=4\cdot DI\)
\(\Leftrightarrow DC-DI=4DI-DI\)
\(\Leftrightarrow CI=3DI\)
a) Vì AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Ta có BE = DE và E ∈ BD nên E là trung điểm của BD.
Xét tam giác BCD có E, M lần lượt là trung điểm của BD, BC nên EM là đường trung bình của tam giác BCD.
Do đó DC // EM (tính chất đường trung bình).
b) Ta có D là trung điểm của AE (vì AD = DE, D ∈ AE).
Mà DI // EM (vì DC // EM).
Do đó DI là đường trung bình của tam giác AEM.
Suy ra I là trung điểm của AM.
a: Xét ΔBDC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//DC
b: Xét ΔAME có
E là trung điểm của AD
DI//EM
Do đó: I là trung điểm của AM