Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha.
a) Xét \(\Delta ABC\), có:
M, I lần lượt là trung điểm của BC,AC.
\(\Rightarrow\) MI là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MI//AB và \(MI=\dfrac{1}{2}AB\)
\(\Rightarrow MI=\dfrac{12}{2}=6\left(cm\right)\)
b)Ta có: \(MI=\dfrac{1}{2}AB\left(cmt\right)\)
Mà \(MI=IJ\)(M đối xứng với J qua I)
\(\Rightarrow IJ=\dfrac{1}{2}AB\)
Do đó: \(MI+IJ=\dfrac{1}{2}AB+\dfrac{1}{2}AB\)
Hay \(MJ=AB\)
Xét tứ giác ABMJ, có:
MJ//AB(\(J\in MI\) mà MI//AB)
\(MJ=AB\left(cmt\right)\)
\(\Rightarrow ABMJ\) là hình bình hành (dấu hiệu nhận biết)
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó: AMNE là hình bình hành
c: Xét ΔAHD có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc HAD(1)
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHE cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
nên AMHN là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó:AMNE là hình bình hành
c: Xét ΔAHD có
AM là đường cao
AM là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của HAD(1)
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{EAD}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=180^0\)
=>E,A,D thẳng hàng
mà AE=AD
nên A là trung điểm của DE
a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.
b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng
Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)
Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)
Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)
Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)
Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)
Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)
Từ (6) suy ra ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)
Từ (***) và (****) suy ra đpcm.
c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I
\(\Rightarrow\)^IAC = ^ICA (7)
Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)
Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)
Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.
P/s: Không chắc nha!