K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a: ĐKXĐ: \(n\ne1\)

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

24 tháng 2 2017

5/a,

ta cần c/m: a/b=a +c/b+d

<=> a(b+d) = b(a+c)

      ab+ad = ba+bc

      ab-ba+ad=bc

                ad=bc

a/b=c/d

vậy đẳng thức được chứng minh

b, Tương tự

23 tháng 10 2017

a) HS tự làm.

b) HS tự làm.

c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.

Do đó n ∈ (-5; -3).

9 tháng 6 2021

học tốt

4 tháng 1 2022

a, Để phân số A ko tồn tại thì phân số A phải có mẫu là 0
n - 2 = 0         
n      = 0 + 2
n      = 2
hoặc n + 1 = 0 
         n       = 0 - 1
         n        = -1
Vậy n có thể là { 2 ; -1 }

4 tháng 1 2022

b, Ở câu a đã loại trừ đc phương án n để A ko tồn tại . Vậy để n tồn tại thì n khác 2 và -1 
=> n thuộc { 0 ; 1 ; -2 ; 3 ; -3 ; 4 ; -4 ; ... }

13 tháng 3 2022

\(M=\frac{n+4}{n+1}\)

a)\(ĐK:n\ne-1\)

b)\(n=0\)

Thay n=0 vào M ta được:

\(M=\frac{0+4}{0+1}=4\)

   \(n=3\)

Thay n=3 vào M ta được:

\(M=\frac{3+4}{3+1}=\frac{7}{4}\)

   \(n=-7\)

Thay n=-7 vào M ta được:

\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)

c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)

Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên 

Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên

Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(3\right)\)

\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)

Vậy....

13 tháng 3 2022

a, đk x khác -1 

b, Với n = 0 => 0+4/0+1 = 4 

Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)

Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)

c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n+11-13-3
n0-22-4

 

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)