K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2022
Ai giúp em với😢

a) Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc đối

Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BHCK có 

I là trung điểm của đường chéo BC(gt)

I là trung điểm của đường chéo HK(H đối xứng với K qua I)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay BH//CK

Suy ra: BE//CK

mà BE⊥AC(gt)

nên CK⊥AC

⇔C nằm trên đường tròn đường kính AK

mà C,A cùng thuộc (O)

nên AK là đường kính của (O)

hay A,O,K thẳng hàng(đpcm)

Một số bài toán hay về tâm nội tiếp:Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam...
Đọc tiếp

Một số bài toán hay về tâm nội tiếp:

Bài 1: Cho tam giác ABC nội tiếp (O), hai điểm K,L di chuyển trên (O) (K thuộc cung AB không chứa C, L thuộc cung AC không chứa B) thỏa mãn KL song song với BC. Gọi U và V lần lượt là tâm nội tiếp các tam giác AKB,ALC. Chứng minh rằng tâm của (UAV) thuộc đường thẳng cố định.

Bài 2: Cho tứ giác lồi ABCD có AD = BC. AC cắt BD tại I. Gọi S,T là tâm nội tiếp các tam giác AID,BIC. M,N là trung điểm các cạnh AB,CD. Chứng minh rằng MN chia đôi ST.

Bài 3: Cho tam giác ABC, đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC,CA,AB tại D,E,F. Kẻ DH vuông góc EF tại H, G là trung điểm DH. Gọi K là trực tâm tam giác BIC. Chứng minh rằng GK chia đôi EF.

Bài 4: Cho tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC,CA,AB tại D,E,F. Gọi AI cắt DE,DF tại K,L; H là chân đường cao hạ từ A của tam giác ABC, M là trung điểm BC. Chứng minh rằng bốn điểm H,K,L,M cùng thuộc một đường tròn có tâm nằm trên (Euler) của tam giác ABC.

1
14 tháng 3 2020

chị gisp em bài này

8 tháng 4 2020

Chỉ mình đi mọi người

27 tháng 3 2018

a, BH ^ AC và CM ^ AC Þ BH//CM

Tương tự => CH//BM

=> BHCM là hình bình hành

b, Chứng minh BNHC là hình bình hành

=> NH//BC

=> AH ^ NH =>  A H M ^ = 90 0

Mà  A B N ^ = 90 0 => Tứ giác AHBN nội tiếp

c, Tương tự ý b, ta có: BHEC là hình bình hành. Vậy NH và HE//BC => N, H, E thẳng hàng

d,  A B N ^ = 90 0 => AN là đường kính đường tròn ngoại tiếp tứ giác AHBN

AN = AM = 2R, AB = R 3 =>  A m B ⏜ = 120 0

S A O B = 1 2 S A B M = R 2 3 4

S A m B ⏜ = S a t A O B - S A O B = R 2 12 4 π - 3 3

=> S cần tìm =  2 S A m B ⏜ = R 2 6 4 π - 3 3

a: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc HBC+góc HCB=90 độ-góc ABC+90 độ-góc ACB

=góc BAC

=>góc BHC=180 độ-góc BAC

=>góc BHC+góc BAC=180 độ

H đối xứng M qua BC

=>BH=BM và CH=CM

Xét ΔBHC và ΔBMC có

BH=BM

HC=MC

BC chung

=>ΔBHC=ΔBMC

=>góc BMC=góc BHC

=>góc BMC+góc BAC=180 độ

=>ABMC nội tiếp

c: Xét tứ giác BHCN có

BC cắt HN tại trung điểm của mỗi đường

=>BHCN là hìnhbình hành

=>góc BHC=góc BNC

=>góc BNC+góc bAC=180 độ

=>ABNC nội tiếp