Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác vuông ABH và tam giác vuông ACH có:
Cạnh AH chung
AB = AC (gt)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (Hai góc tương ứng)
Vậy nên AH là tia phân giác góc BAC.
b) Xét hai tam giác vuông AEH và AFH có:
Cạnh AH chung
\(\widehat{EAH}=\widehat{FAH}\)
\(\Rightarrow\Delta AEH=\Delta AFH\) (Cạnh huyền - góc nhọn)
\(\Rightarrow HE=HF\) (Hai cạnh tương ứng)
Suy ra tam giác HEF cân tại E.
c) Dễ thấy \(\Delta ABK=\Delta ACK\left(c-g-c\right)\)
\(\Rightarrow\widehat{AKB}=\widehat{AKC}\)
Lại có \(\widehat{AKC}=\widehat{AHF}\) (Đồng vị)
\(\widehat{AHF}=\widehat{AHE}\) (Do \(\Delta AEH=\Delta AFH\) )
\(\Rightarrow\widehat{AKB}=\widehat{AHE}\) hay HE // BK
d) Ta có \(\Delta AHN=\Delta AHM\left(c-g-c\right)\)
\(\Rightarrow\widehat{MAH}=\widehat{NAH}=90^o\)
\(\Rightarrow\widehat{MAN}=180^o\) hay M, N, A thẳng hàng.
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H
c: Xét ΔACK và ΔABK có
AC=AB
\(\widehat{CAK}=\widehat{BAK}\)
AK chung
Do đó: ΔACK=ΔABK
Suy ra: \(\widehat{ACK}=\widehat{ABK}=90^0\)
=>BK\(\perp\)AB
hay BK//EH
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác
b: Xét ΔEAH vuông tại E và ΔFAH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔEAH=ΔFAH
Suy ra: HE=HF
hay ΔHEF cân tại H