Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) => \(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
=> A = 2 + 2+ 2 = 6
vậy...
\(\text{Giải :}\)
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{a+b+c}=2\)
\(\Rightarrow\text{A = 2 + 2 + 2 = 2 . 3 = 6}\)
\(\text{Vậy ....................}\)
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
\(A=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
a+b+c=0 \(\Rightarrow a+b=-c; b+c=-a;a+c=-b\)
Thay vào A ta được
\(A=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=-1\)
áp dụng tính chất của DTS bằng nhau ta được:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}=\frac{a+b-c+b+c-a+c+a-b}{c+a+b}\)
\(=\frac{a+b+c}{a+b+c}=1\)
Suy ra: \(\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)
\(\frac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\)
\(\frac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
=>\(B=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)
\(=\frac{2c}{a}.\frac{2a}{b}.\frac{2b}{c}=8\)
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath