Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Bài 1:
Giải:
Số tự nhiên có hai chữ số có dạng: \(\overline{ab}\)
Khi viết số đó sau số 2003 ta được số: \(\overline{2003ab}\)
Theo bài ta có: \(\overline{2003ab}\) ⋮ 37
200300 + \(\overline{ab}\) ⋮ 37
200281 + 19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) ⋮ 37
19 + \(\overline{ab}\) \(\in\) B(37) = {0; 37; 74; 111; 148;...;}
\(\overline{ab}\) \(\in\) {-19; 18; 55; 92; 129;...;}
Vậy \(\overline{ab}\) \(\in\) {18; 55; 92}