K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

a/ \(\left\{{}\begin{matrix}xy=2016\\x+y=-95\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y-95\\\left(-y-95\right)y=2016\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y-95\\y^2+95y+2016=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y-95\\\left(y^2+32y\right)+\left(63y+2016\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y-95\\y\left(y+32\right)+63\left(y+32\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y-95\\\left(y+32\right)\left(y+63\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-32\\x=-63\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}y=-63\\x=-32\end{matrix}\right.\)

29 tháng 1 2019

c/ Vì x nguyên dương nên dễ thấy

\(7^y=x^3+5x^2+21>x+5=7^z\)

\(\Leftrightarrow y>z\)

Xét \(y>z>1\)

Ta có:

\(7^y=x^3+5x^2+21=x^2.7^z+21\)

\(\Leftrightarrow7^{y-1}-x^2.7^{z-1}=3\) không thỏa mãn vì vế trái chia hết cho 7 VP không chia hết cho 7.

Xét \(z=1\)

\(\Rightarrow x=7^1-5=2\)

\(\Rightarrow7^y=2^3+5.2^2+21=49=7^2\)

\(\Rightarrow y=2\)

Vậy giá trị x, y, z cần tìm là: (x; y; z) = (2; 2; 1)

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)