Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{a+2b+c+c+3a}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{2a+b+c}\)
Chứng minh tương tự ta được: \(\left\{{}\begin{matrix}\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{2}{a+2b+c}\\\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{2}{a+b+2c}\end{matrix}\right.\)
Cộng theo vế:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}+\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\)
\(\Rightarrow\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)
p/s: đã sửa đề
Hình như đề sai , giả sử a = b = c = 0
=> vế trái bằng 0 , vé phải bằng 24
\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Áp dụng bđt buniacopxki dạng phân thức:
\(\dfrac{1}{a+3b}+\dfrac{1}{b+2c+a}\ge\dfrac{\left(1+1\right)^2}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)
TT: \(\dfrac{1}{c+3a}+\dfrac{1}{a+2b+c}\ge\dfrac{2}{2a+b+c};\dfrac{1}{b+3c}+\dfrac{1}{c+2a+b}\ge\dfrac{2}{a+b+2c}\)
Cộng vế theo vế:
\(\dfrac{1}{a+3b}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+3a}+\dfrac{1}{a+2b+c}+\dfrac{1}{b+3c}+\dfrac{1}{c+2a+b}\ge\dfrac{2}{a+2b+c}+\dfrac{2}{2a+b+c}+\dfrac{2}{a+b+2c}\)
<=>\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)
Dấu "=" <=> a=b=c
Ta CM BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},a+b\ge2\sqrt{ab}\)( co si với a,b>0)
Suy ra \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\RightarrowĐPCM\)\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(1\right)\)
a/Áp dụng (1) có
\(\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\left(2\right)\).Tương tự ta cũng có:
\(\frac{1}{b+c+2a}\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\left(3\right),\frac{1}{c+a+2b}\le\frac{1}{4}\left(\frac{1}{b+c}+\frac{1}{a+b}\right)\left(4\right)\)
Cộng (2),(3) và (4) có \(VT\le\frac{1}{4}.\left(6+6\right)=3\left(ĐPCM\right)\)
b/Áp dụng (1) có:
\(\frac{1}{3a+3b+2c}=\frac{1}{\left(a+b+2c\right)+2\left(a+b\right)}\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{2\left(a+b\right)}\right)\left(5\right)\)
Tương tự có: \(\frac{1}{3a+2b+3c}\le\frac{1}{4}\left(\frac{1}{a+c+2b}+\frac{1}{2\left(a+c\right)}\right)\left(6\right)\)
\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{2a+b+c}+\frac{1}{2\left(b+c\right)}\right)\left(7\right)\)
Cộng (5),(6) và (7) có:
\(VT\le\frac{1}{4}\left(\frac{1}{a+b+2c}+\frac{1}{a+c+2b}+\frac{1}{2a+b+c}+\frac{1}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\right)\le\frac{1}{4}.9=\frac{3}{2}\)
Áp dụng bất đẳng thức \(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) với x, y, z > 0 ta có:
\(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}=\dfrac{1}{9}\left(\dfrac{9}{a+a+b}+\dfrac{9}{b+b+c}+\dfrac{1}{c+c+a}\right)\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)=\dfrac{1}{9}.3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\).
\(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}< =\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\)
Có \(\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}< =\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)
Cm tương tự, ta có:
\(\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}< =\dfrac{2}{b+2c+a}\)\(\)
\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}< =\dfrac{2}{c+2a+b}\)
Cộng 2 vế của 3 BĐT với nhau, ta có:
\(\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}+\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}+\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}< =\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\)
\(\Leftrightarrow\left(\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}+\dfrac{1}{a+2b+c}\right)+\left(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\right)< =\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\)
\(\Leftrightarrow\dfrac{-\left(c+2a+b\right)\cdot\left(a+2b+c\right)-\left(b+2c+a\right)\left(a+2b+c\right)-\left(b+2c+a\right)\left(c+2a+b\right)}{\left(b+2c+a\right)\cdot\left(c+2a+b\right)\cdot\left(a+2b+c\right)}+\dfrac{\left(b+3c\right)\left(c+3a\right)+\left(a+3b\right)\left(c+3a\right)+\left(a+3b\right)\left(b+3c\right)}{\left(a+3b\right)\left(b+3c\right)\left(c+3a\right)}\le0\)