\(\frac{x}{a}+\frac{y}{b}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 1:

a) Từ đkđb:

$x+y+z=0\Rightarrow x+y=-z; y+z=-x; z+x=-y$

$\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\Rightarrow xbc+yac+zab=0$

$a+b+c=0\Rightarrow a=-(b+c)\Rightarrow a^2=(b+c)^2$

$\Rightarrow a^2x=(b+c)^2x$.

Tương tự: $b^2y=(a+c)^2y; c^2z=(a+b)^2z$

Do đó:

$a^2x+b^2y+c^2z=(b+c)^2x+(a+c)^2y+(a+b)^2z=a^2(y+z)+b^2(z+x)+c^2(x+y)+2(xbc+yac+zab)$

$=a^2(-x)+b^2(-y)+c^2(-z)+2.0=-(a^2x+b^2y+c^2z)$

$\Rightarrow 2(a^2x+b^2y+c^2z=0$

$\Rightarrow a^2x+b^2y+c^2z=0$ (đpcm)

b)

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \frac{x+y+z}{2}=ax+by+cz\)

\(\Rightarrow \left\{\begin{matrix} ax=\frac{x+y+z}{2}-x=\frac{y+z-x}{2}\\ by=\frac{x+y+z}{2}-y=\frac{x+z-y}{2}\\ cz=\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} a=\frac{y+z-x}{2x}\\ b=\frac{x+z-y}{2y}\\ c=\frac{x+y-z}{2z}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a+1=\frac{y+z+x}{2x}\\ b+1=\frac{x+z+y}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\) (đpcm)

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 2:
Đặt $\frac{a_2}{a_1}=x; \frac{b_2}{b_1}=y; \frac{c_2}{c_1}=z$

Khi đó bài toán trở thành: Cho $x,y,z\neq 0$ thỏa mãn \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\)

CMR: $x^2+y^2+z^2=1$

-----------------------------------

Thật vậy:

Ta có: \(\left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\\ x+y+z=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} xy+yz+xz=0\\ x+y+z=1\end{matrix}\right.\)

Khi đó: $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=1^2-2.0=1$ (đpcm)

Vậy........

3 tháng 12 2016

Đặt \(\hept{1\begin{cases}\frac{a_2}{a_1}=x\\\frac{b_2}{b_1}=y\\\frac{c_2}{c_1}=z\end{cases}}\)

Thì bài toán thành

x + y + z = 1(1); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\)

Chứng minh x2 + y2 + z= 1

Từ (2) ta có \(\frac{xy+yz+zx}{xyz}=0\Leftrightarrow xy+yz+zx=0\)

Từ (1) ta có

(x + y + z)2 = 1

<=> x2 + y2 + z2 + 2(xy + yz + zx) = 0

<=> x2 + y2 + z2 = 1

3 tháng 12 2016

bằng 1 đó chắc chắn lun

24 tháng 2 2017

câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)

vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1

suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)

Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)

24 tháng 2 2017

câu 3 98

16 tháng 8 2017

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

16 tháng 8 2017

mình giải hơi khác 1 chút, nhưng thôi cx đc

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

Ta có : \(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(z+x\right)^2\\z=\left(x+y\right)^2\end{cases}}\)

\(\Rightarrow ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

                                       \(=ay^2+az^2+bz^2+bx^2+cx^2+cy^2+2\left(ayz+bzx+cxy\right)\) 

                                       \(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\left(1\right)\)

Từ \(a+b+c=0\)                    \(\Rightarrow\hept{\begin{cases}b+c=-a\\c+a=-b\\a+b=-c\end{cases}}\) 

Thay vào \(\left(1\right)\), ta được :

\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2+2\left(ayz+bzx+cxy\right)\)

Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)\(\Rightarrow ayz+bzx+cxy=0\)

\(\Rightarrow ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)

\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

8 tháng 12 2016

Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)

   \(\left(\frac{x}{a}+\frac{y}{b}\right)^2+2\left(\frac{x}{a}+\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)

\(\left(\frac{x}{a}\right)^2+2\frac{x}{a}\frac{y}{b}+\left(\frac{y}{b}\right)^2+\left(2\frac{x}{a}+2\frac{y}{b}\right)\frac{z}{c}+\left(\frac{z}{c}\right)^2=1\)

\(\frac{x^2}{a^2}+\frac{2xy}{ab}+\frac{y^2}{b^2}+\frac{2xz}{ac}+\frac{2yz}{bc}+\frac{z^2}{c^2}=1\)

\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\left(\frac{2xy}{ab}+\frac{2xz}{ac}+\frac{2yz}{bc}\right)=1\)

\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}\left(\frac{c}{z}+\frac{b}{y}+\frac{a}{x}\right)=1\)

\(\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)+\frac{2xyz}{abc}.0=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\left(ĐPCM\right)\)

24 tháng 12 2018

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)

\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)