Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC và AB//CD
Ta có: AD//BC
AP\(\perp\)BC
Do đó: AP\(\perp\)AD
Ta có: AP\(\perp\)AD
CQ\(\perp\)AD
Do đó: AP//CQ
Ta có: AD//BC
Q\(\in\)AD
P\(\in\)BC
Do đó: AQ//CP
Xét tứ giác APCQ có
AQ//CP
AP//CQ
=>APCQ là hình bình hành
=>AC cắt PQ tại trung điểm của mỗi đường
mà N là trung điểm của AC
nên N là trung điểm của PQ
b: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi
ABCD trở thành hình chữ nhật khi \(\widehat{ABC}=90^0\)
ABCD trở thành hình thoi khi BA=BC
Vậy: Để ABCD trở thành hình vuông thì BA=BC và \(\widehat{ABC}=90^0\)
a: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Ta có: ABCD là hình bình hành
=>AD//BC
Ta có: AD//BC
AP\(\perp\)BC
Do đó: AP\(\perp\)AD
Ta có: AP\(\perp\)AD
CQ\(\perp\)AD
Do đó: AP//CQ
ta có: AD//CB
\(Q\in\)AD
P\(\in\)BC
Do đó: AQ//CP
Xét tứ giác APCQ có
AP//CQ
AQ//CP
Do đó: APCQ là hình bình hành
=>AC cắt PQ tại trung điểm của mỗi đường
mà N là trung điểm của AC
nên N là trung điểm của PQ
=>P,N,Q thẳng hàng
c: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi(1)
Hình bình hành ABCD trở thành hình chữ nhật khi \(\widehat{ABC}=90^0\)(2)
Hình bình hành ABCD trở thành hình thoi khi BA=BC(3)
Từ (1),(2),(3) suy ra \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\BA=BC\end{matrix}\right.\)
a.Ta có: AC∩DB=N��∩��=� là trung điểm mỗi đường
→ABCD→���� là hình bình hành
b.Từ câu a →AD//BC→AQ//CP→��//��→��//��
Mà AP⊥BC→AP⊥AD→AP//CQ(⊥AD)��⊥��→��⊥��→��//��(⊥��)
→AQCP→���� là hình bình hành
Mà AP⊥PC→APCQ��⊥��→���� là hình chữ nhật
→AC∩PQ→��∩�� tại trung điểm mỗi đường
Do N� là trung điểm AC��
→N→� là trung điểm PQ��
→P,N,Q→�,�,� thẳng hàng
c.Vì ABCD���� là hình bình hành
Để ABCD���� là hình vuông →AB⊥BC,BA=BC→ΔABC→��⊥��,��=��→Δ��� vuông cân tại B�
a: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét tứ giác APCQ có
AP//CQ
AQ//CP
=>APCQ là hình bình hành
=>AC cắt PQ tại trung điểm của mỗi đường
=>P,N,Q thẳng hàng