Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)54x275+825x15+275 b)(15+17+19+...+57+59)x(n:1-nx1)
= 54x275+275x3x15+275 = A x (n-n)
= 54x275+275x45+275 = A x 0
= 275x(54+45+1) = 0
= 275x100
=27500
Cảm ơn rất nhiều vì mk cũng có câu hỏi giống nguyễn huyền trang
= 0 vì dấu ngoặc đầu tiên giữ nguyên dấu ngoặc còn lại tính như sau : n : 1 = n
n x 1 = n mà n- n = 0 = > Kết quả =0
a: \(=\dfrac{17}{19}\cdot\dfrac{19}{17}\cdot\dfrac{4}{5}=\dfrac{4}{5}\)
b: \(=\dfrac{14}{7}\cdot\dfrac{7}{6}=2\cdot\dfrac{7}{6}=\dfrac{14}{6}=\dfrac{7}{3}\)
c: =13/14(4/5+1/5)=13/14
\(\dfrac{17}{19}\times\dfrac{12}{15}\times\dfrac{19}{17}.\\ =\dfrac{17}{19}\times\dfrac{19}{17}\times\dfrac{12}{15}.\\ =1\times\dfrac{12}{15}=\dfrac{12}{15}.\\ \left(\dfrac{5}{7}+\dfrac{9}{7}\right)\times\dfrac{21}{18}.\\ =2\times\dfrac{7}{6}=\dfrac{7}{3}.\\ \dfrac{4}{5}\times\dfrac{13}{14}+\dfrac{13}{14}\times\dfrac{1}{5}.\\ =\left(\dfrac{4}{5}+\dfrac{1}{5}\right)\times\dfrac{13}{14}.\\ =1\times\dfrac{13}{14}.\\ =\dfrac{13}{14}.\)
\(a,\dfrac{9}{17}+\dfrac{15}{4}=\dfrac{36}{68}+\dfrac{255}{68}=\dfrac{291}{68}\\ b,\dfrac{19}{121}-\dfrac{1}{11}=\dfrac{19}{121}-\dfrac{11}{121}=\dfrac{8}{121}\\ c,\dfrac{4}{15}+3=\dfrac{4}{15}+\dfrac{45}{15}=\dfrac{49}{15}\\ d,3-\dfrac{5}{9}=\dfrac{27}{9}-\dfrac{5}{9}=\dfrac{22}{9}\)
\(a,\dfrac{9}{17}+\dfrac{15}{4}=\dfrac{36}{68}+\dfrac{255}{68}=\dfrac{291}{68}\)
\(b,\dfrac{19}{121}-\dfrac{1}{11}=\dfrac{19}{121}-\dfrac{11}{121}=\dfrac{8}{121}\)
\(c,\dfrac{4}{15}+3=\dfrac{4}{15}+\dfrac{3}{1}=\dfrac{4}{15}+\dfrac{45}{15}=\dfrac{49}{15}\)
\(d,3-\dfrac{5}{9}=\dfrac{3}{1}-\dfrac{5}{9}=\dfrac{27}{9}-\dfrac{5}{9}=\dfrac{22}{9}\)
1+2+3+4+5+...+15+16+17+18+19+20
= ( 1 + 19 ) + ( 2 + 18 ) + ( 3 + 17 ) + ( 4 + 16 ) + ( 5 + 15 ) + ... + ( 9 + 11 ) + ( 10 + 20 )
= 20 + 20 + 20 + 20 + ... + 20 + 30
= 180 + 30 = 210
Tính số phần tử: \(\text{1+2+3+4+...+18+19+20}\)
\(=\left(20-1\right):1+1\) \(=20\)
Tổng : \(\dfrac{\left(20+1\right)\times20}{2}=210\)
Ta có:
\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)
\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)
Ta lại có:
\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)
\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)
\(=\frac{1.2.3...36}{1.2.3...36}=1\)
Từ đây ta suy ra được
\(A-B=1-1=0\)
( 15 + 17 + 19 + ... + 57 + 59 ) x ( n : 1 - n x 1 )
= ( 15 + 17 + 19 + ... + 57 + 59 ) x 0
= 0