Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
\(1.2+2.3+3.4+....+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
Áp dụng vào bài toán ta được :
\(S=\frac{100.101.102}{3}+\frac{100.101}{2}\)
= 343400 + 5050
= 348450
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
1.3+2.4+3.5+4.6+...+99.101
=(2-1).(2+1)+(3-1).(3+1)+(4-1).(4+1)+.....+(100-1).(100+1)
=2^2-1+3^2-1+4^2-1 +.....+100^2-1
=(2^2+3^2+4^2+.......100^2)-(1+1+....+1)
=(2^2+3^2+4^2+.......100^2)-99
S = 1.3 + 2.4 + 3.5 + 4.6 + ..... + 99.101 + 100.102
= 1.(2 + 1) + 2(3 + 1) + 3.(4 + 1) + ......... + 99(100 + 1) + 100.(101 + 1)
= 1.2 + 1 + 2.3 + 1 + 3.4 + 3 + ........ + 99.100 + 99 + 100.101 + 100
= (1.2 + 2.3 + 3.4 + ....... + 100.101 ) + (1 + 2 + 3 + ....... + 100)
Ta có công thức :
1.2+2.3+3.4+....+n(n+1)=n(n+1)(n+2)/3
1+2+3+...+n=n(n+1)/2
Áp dụng vào bài toán ta được :
S=100.101.102/3 +100.101/2
= 343400 + 5050
= 348450
A=1.3+3.5+5.7+...+99.101
6A=1.3(5+1)+3.5(7-1)+5.7(9-3)+7.9(11-5)+...+99.101(103-97)
= 1.3.5+1.3+3.5.7-3.5+5.7.9-3.5.7+7.9.11-5.7.9+...+99.101.103-97.99.101
=1.3+99.101.103
=> A= \(\frac{1.3+99.101.103}{6}\)
a. Ta có: \(A=1\cdot3+3\cdot5+5\cdot7+...+99\cdot101\)
\(\Rightarrow A=1\left(1+2\right)+3\cdot\left(3+2\right)+...+99\left(99+2\right)\)
\(\Rightarrow A=\left(1^2+3^2+5^2+...+97^2+99^2\right)+2\left(1+3+5+...+97+99\right)\)
Đặt \(M=1^2+3^2+5^2+99^2\)
\(\Rightarrow M=\left(1^2+2^2+3^2+...+100^2\right)-2^2\left(1^2+2^2+3^2+50^2\right)\)
Tính dãy tổng quát \(N=1^2+2^2+3^2+...+n^2\)
\(\Rightarrow N=1\left(0+1\right)+2\left(1+1\right)+3\left(2+1\right)+...+n[\left(n-1\right)+1]\)
\(\Rightarrow N=\left[1\cdot2+2\cdot3+...+\left(n-1\right)n\right]+\left(1+2+3+...+n\right)\)
\(\Rightarrow N=n\left(n+1\right)\cdot\left[\left(n-1\right):3+1:2\right]=n\left(n+1\right)\cdot\left(2n+1\right):6\)
Áp dụng vào M ta được:
\(M=100\cdot101\cdot201:6-4\cdot50\cdot51\cdot101:6=166650\)
\(\Rightarrow A=166650+2\left(1+99\right)\cdot50:2\)
\(\Rightarrow A=166650+5000=171650\)
Vậy \(A=171650\)
1.3+2.4+3.5+...+99.101
= ( 2 -1 ). ( 2 + 1 ) + ( 3 -1) . ( 3 + 1 ) + . . . + ( 100 - 1 ) . ( 100 + 1 )
= \(2^2\) - 1 + \(3^2\) - 1 + . . . + \(100^2\) - 1
= ( \(2^2\) + \(3^2\)+ \(100^2\) ) - ( 1 + 1 + . . . + 1 )
= ( \(2^2\) + \(3^2\)+. . . + \(100^2\)) - 99
Tk mk nha
Cách khác của bài 1:
B=1.3+2.4+3.5+...+97.99+98.100B=1.3+2.4+3.5+...+97.99+98.100
B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)B=1(2+1)+2(3+1)+....+97(98+1)+98(99+1)
B=1.2+1+2.3+2+....+97.98+97+98.99+98B=1.2+1+2.3+2+....+97.98+97+98.99+98
B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)B=(1.2+2.3+3.4+....+97.98+98.99)+(1+2+3+...+98)
B=98.99.1003+98.992B=98.99.1003+98.992
B=323400+4851=328251B=323400+4851=328251
1.3+2.4+3.5+...+98.100=22−1+32−1+...+992−1=12+22+32+...+992−99=99.100.1996−99=3282511.3+2.4+3.5+...+98.100=22−1+32−1+...+992−1=12+22+32+...+992−99=99.100.1996−99=328251
Bài 2: A=1.2.3+2.3.4+...+97.98.99<=>4A=1.2.3.4+2.3.4.4+...+97.98.99.4=1.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)A=1.2.3+2.3.4+...+97.98.99<=>4A=1.2.3.4+2.3.4.4+...+97.98.99.4=1.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)
1.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+...+97.98.99.100−96.96.98.99=97.98.99.1001.2.3.(4−0)+2.3.4.(5−1)+...+97.98.99.(100−96)=1.2.3.4−0.1.2.3+2.3.4.5−1.2.3.4+...+97.98.99.100−96.96.98.99=97.98.99.100
Suy ra A=97.98.99.1004=23527350A=97.98.99.1004=23527350