K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)

\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}\right):2=\left(\frac{2009}{2011}\right):2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)

=> x + 1 = 2011

=> x = 2000

12 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(=>\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)

\(=>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1009}{4022}\)

\(=>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(=>\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(=>\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(=>\frac{1}{x+1}=\frac{1}{2011}\)

\(=>x+1=2011\)

\(=>x=2010\)

12 tháng 8 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)

\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}\right):2=\left(\frac{2009}{2011}\right):2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)

=> x + 1 = 2011

=> x = 2000

21 tháng 9 2018

x=2010

19 tháng 12 2018

x=2010

12 tháng 8 2016

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)

\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}=\frac{1}{41}\)

=> x + 2 = 41 

=> x = 39

7 tháng 6 2018

Bài 3: 

= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99

= 1- 1/99

= 98/99

Bài 4:

= 1/2*3 + 1/3*4 + 1/4*5 +...+  1/10*11

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11

= 1/2 - 1/11= 9/22

17 tháng 10 2016

 Bài toán này ta có thể giải như sau:

1/3+1/6+1/10+...+1/X x (X +1) :2 =  2009/2011

Nhân hai vế với 1/2

Ta được

1/6 + 1/12 + 1/20 +...+1/ X x (X +1) = 2009/4022

1/ 2x3 +1/3x4 +1/4x5 +...+1/X x (X +1) = = 2009/4022

1/2 - 1/3 +1/3 -1/4 + 1/4 - 1/5 +...1/X - 1/(X +1)= = 2009/4022

1/2 -1/ (X + 1)  = 2009/4022

1/(X + 1) = 1/2 - 2009/4022

1/(X + 1)  = 1/2011

X = 2010

nhae