Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=2013
Mà 2013: 3 = 671
Vậy A : 3 dư 0 hay\(A⋮3\)
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
http://d.f24.photo.zdn.vn/upload/original/2016/02/14/10/03/3204324726_616688374_574_574.jpg
Ta có: A= 1+2-3-4+5+6-7-8+...-2011-2012+2013+2014
= (1+2-3-4)+(5+6-7-8)+...(2009+2010-2011-2012)+(2013+2014)
Ta thấy từ 1 đến 2012 có: +1=2012(số)
Ta nhóm các số hạng kia trong tổng A và bớt đi tổng 2013+2014, mỗi nhóm là 4 số hạng liên tiếp
=> Có số nhóm là: 2012:4=503(nhóm)
Ta lại có: A= (1+2-3-4)+(5+6-7-8)+...(2009+2010-2011-2012)+(2013+2014)
=(-4)+(-4)+...+(-4)+(2013+2014) (503 số hạng -4)
=(-4).503+(2013+2014)
=(-2012)+4027
=2015
Vậy A=2015
1+2-3-4+5+6-...-2011-2012-2013+2014(có 2014 số hạng)
= 1+2+ (-3-4+5+6) + .... +(-2011 -2012 +2013 +2014) (có 503 nhóm và 2 số hạng)
= 3 + 4 + ...+ 4( có 503 số 4 và 1 số 3)
= 4 x 503 + 3
= 2015
Tới : nguyen thi trang,Trần Đặng Phan Vũ và Takurenu Kirito