Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
Ta có
200-(3+2/3+...+2/100)
=200-(3+2(1/3+...+1/100)
=200-(3+2 (1-2/3+1-3/4+...+1-99/100))
=200-(3+2(98-(2/3+3/4+...+99/100)))
=200-3-196-(2/3+3/4+...+99/100)
=1-(2/3+3/4+...+99/100)
Thay:1-(2/3+3/4+...+99/100)/2/3+3/4+......+99/100=1/(1/2)=2
* Bỏ ngoặc vuông đi :(
\(\text{Ta có:}\)
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(\rightarrow200-2-\left(1+\frac{2}{3}+...+\frac{2}{100}\right)\)
\(\rightarrow198-\left(1+\frac{2}{3}+...+\frac{2}{100}\right)\)
\(\rightarrow198-\left(1+\frac{2}{3}+...+\frac{2}{100}\right)\)
\(\rightarrow2.[99-\left(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}\right)]\) \(\left(1\right)\)
\(\text{Ta có:}\)
\(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(\text{Rút}\)\(\left(1\right)\)\(\text{ra có 99 số}\)
\(\rightarrow99-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\) \(\left(2\right)\)
\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\Rightarrow\)\(200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+...+\frac{2}{100}\right):\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)=2\)
Ta có \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)
\(\Rightarrow A=2\)
Lời giải:
Gọi phân số vế trái là $A$. Gọi tử số là $T$. Xét mẫu số:
\(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
\(=1-\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+....+1-\frac{1}{100}\)
\(=99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=100-(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100})\)
\(=\frac{1}{2}\left[200-(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100})\right]=\frac{1}{2}T\)
$\Rightarrow A=\frac{T}{\frac{1}{2}T}=2$
Ta có đpcm.
Giải:
Vì \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\) nên phần tử gấp 2 lần phần mẫu
Ta có:
\(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[100-\left(\dfrac{3}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left[\left(2-\dfrac{3}{2}\right)+\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{5}\right)+...+\left(1-\dfrac{1}{100}\right)\right]}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=\dfrac{2.\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{4}{5}+...+\dfrac{99}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}\)
\(=2\)
Vậy \(\dfrac{200-\left(3+\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}+...+\dfrac{2}{100}\right)}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}=2\left(đpcm\right)\)
Chúc bạn học tốt!
) 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100 ( có 100 số; 100 chia hết cho 4)
= (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (97 - 98 - 99 + 100)
= 0 + 0 + ... + 0
= 0
x+1+x-2+x+3+x-4+.........+x+99+x-100=4*7*200
=>( x + x + ..... + x ) + ( 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100 ) = 5600
100 số hạng
=> 100x + [(1 - 2) + (3 - 4) +... + (99 - 100) = 5600
50 cặp
=> 100x + (-1)*50 = 5600
=> 100x + ( -50 ) = 5600
=> 100x = 5600 - ( -50 )
=> 100x = 5650
=> x = 5650 : 100
=> x = 56,5
Có số số hạng là :
(200-1):1+1=200(số)
Tổng của dãy là:
(200+1)x200:2=20100
Tổng trên bằng:
(200+1):2x200=10100
Đáp số: 10100